Suppr超能文献

用于模拟肿瘤微环境的芯片上原位外泌体富集方法的优化在胶质母细胞瘤肿瘤模型中诱导癌症干性

Optimization of In-Situ Exosome Enrichment Methodology On-a-Chip to Mimic Tumor Microenvironment Induces Cancer Stemness in Glioblastoma Tumor Model.

作者信息

Saffar Saleheh, Ghiaseddin Ali, Irani Shiva, Hamidieh Amir Ali

机构信息

Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.

Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA.

出版信息

Cells. 2025 May 6;14(9):676. doi: 10.3390/cells14090676.

Abstract

Understanding cancer etiology requires replicating the tumor microenvironment (TME), which significantly differs from standard in vitro cultures due to nutrient limitations, acidic pH, and oxidative stress. To address this, a microfluidic bioreactor (µBR) with an expanded culture surface was designed to optimize exosome enrichment and glioblastoma cell behavior. Using response surface methodology (RSM), key parameters-including medium exchange volume and interval time-were optimized, leading to about a six-fold increase in exosome concentration without artificial inducers. Characterization techniques (SEM, AFM, DLS, RT-qPCR, and ELISA) confirmed significant alterations in exosome profiles, cancer stemness, and epithelial-mesenchymal transition (EMT)-related markers. Notably, EMT was induced in the µBR system, with a six-fold increase in HIF-1α protein despite normoxic conditions, suggesting activation of compensatory signaling pathways. Molecular analysis showed upregulation of , , and , with SOX2 protein reaching 28 ng/mL, while it was undetectable in traditional culture. Notch1 concentration tripled in the µBR system, correlating with enhanced stemness and phenotypic heterogeneity. Immunofluorescent microscopy confirmed nuclear SOX2 accumulation and co-expression of SOX2 and HIF-1α in dedifferentiated CSC-like cells, demonstrating tumor heterogeneity. These findings highlight the µBR's ability to enhance stemness and mimic glioblastoma's aggressive phenotype, establishing it as a valuable platform for tumor modeling and therapeutic development.

摘要

了解癌症病因需要复制肿瘤微环境(TME),由于营养限制、酸性pH值和氧化应激,肿瘤微环境与标准体外培养有显著差异。为了解决这个问题,设计了一种具有扩大培养表面的微流控生物反应器(µBR),以优化外泌体富集和胶质母细胞瘤细胞行为。使用响应面法(RSM)对包括培养基交换体积和间隔时间在内的关键参数进行了优化,在没有人工诱导剂的情况下,外泌体浓度提高了约6倍。表征技术(SEM、AFM、DLS、RT-qPCR和ELISA)证实了外泌体谱、癌症干性和上皮-间质转化(EMT)相关标志物的显著变化。值得注意的是,µBR系统中诱导了EMT,尽管处于常氧条件下,HIF-1α蛋白仍增加了6倍,这表明补偿性信号通路被激活。分子分析显示 、 和 上调,SOX2蛋白达到28 ng/mL,而在传统培养中无法检测到。Notch1浓度在µBR系统中增加了两倍,与增强的干性和表型异质性相关。免疫荧光显微镜证实了去分化的CSC样细胞中SOX2的核积累以及SOX2和HIF-1α的共表达,证明了肿瘤异质性。这些发现突出了µBR增强干性和模拟胶质母细胞瘤侵袭性表型的能力,使其成为肿瘤建模和治疗开发的有价值平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3654/12071966/57fd25b83072/cells-14-00676-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验