Hou Song, Du Jiangkun, Ling Haibo, Quan Sen, Bao Jianguo, Yi Chuan
Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China.
Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan 430072, China.
Nanomaterials (Basel). 2025 Apr 28;15(9):669. doi: 10.3390/nano15090669.
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe) systems, we developed oxalate-modified nFe (nFe) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization (STEM and FT-IR) confirmed the formation of a FeCO/nFe heterostructure, where oxalate coordinated with Fe(II) to construct a semiconductor interface that effectively inhibits anoxic passivation while enabling continuous electron supply, achieving 100% Cr(VI) removal efficiency within 20 min at an optimal oxalate/Fe molar ratio of 1/29. Mechanistic studies revealed that the oxalate ligand accelerates electron transfer from the Fe core to the surface via the FeCO-mediated pathway, as evidenced by EIS and LSV test analyses. This process dynamically regenerates surface Fe(II) active sites rather than relying on static-free Fe(II) adsorption. XPS and STEM further demonstrated that Cr(VI) was reduced to Cr(III) and uniformly co-precipitated with Fe(II/III)-oxalate complexes, effectively immobilizing chromium. The synergy between the protective semiconductor layer and the ligand-enhanced electron transfer endows nFe with superior reactivity. This work provides a ligand-engineering strategy to design robust nFe-based materials for sustainable remediation of metal oxyanion-contaminated water.
为应对纳米零价铁(nFe)体系中的环境适应性和钝化挑战,我们通过配位驱动的合成策略开发了草酸盐修饰的nFe(nFe),旨在实现高效去除Cr(VI),同时提高稳定性和可重复使用性。结构表征(STEM和FT-IR)证实形成了FeCO/nFe异质结构,其中草酸盐与Fe(II)配位构建了一个半导体界面,有效抑制缺氧钝化,同时实现持续电子供应,在草酸盐/铁摩尔比为1/29的最佳条件下,20分钟内Cr(VI)去除效率达到100%。机理研究表明,草酸盐配体通过FeCO介导的途径加速电子从铁核转移到表面,EIS和LSV测试分析证明了这一点。该过程动态再生表面Fe(II)活性位点,而不是依赖于静态游离Fe(II)的吸附。XPS和STEM进一步表明,Cr(VI)被还原为Cr(III),并与Fe(II/III)-草酸盐络合物均匀共沉淀,有效固定铬。保护性半导体层与配体增强的电子转移之间的协同作用赋予nFe卓越的反应活性。这项工作提供了一种配体工程策略,用于设计坚固的nFe基材料,以可持续修复金属含氧阴离子污染的水。