Xu Haowen, Xu Yuehua
School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.
Nanomaterials (Basel). 2025 Apr 30;15(9):679. doi: 10.3390/nano15090679.
In this study, we demonstrate that the SnSeP monolayer exhibits intrinsic anisotropic electronic characteristics with the strain-synergistic modulation of carrier transport and optoelectronic properties, as revealed by various levels of density functional theory calculations combined with the non-equilibrium Green's function method. The calculations reveal that -axis uniaxial compression of the SnSeP monolayer induces an indirect-to-direct bandgap transition (from 1.73 eV to 0.97 eV, as calculated by HSE06), reduces the hole effective mass by ≥70%, and amplifies current density by 684%. Conversely, -axis uniaxial expansion (+8%) boosts ballistic transport (/-axis current ratio > 10), rivaling black phosphorus. Notably, a striking negative differential conductance arises with the maximum / in the order of 10 under the 2% uniaxial compression along the -axis of the SnSeP monolayer. Visible-range anisotropic absorption coefficients (~10 cm) are achieved, where -4% -axis strain elevates the photocurrent density (6.27 μA mm at 2.45 eV) and external quantum efficiency (39.2%) beyond many 2D materials benchmarks. Non-monotonic strain-dependent photocurrent density peaks at 2.00 eV correlate with hole effective mass reduction patterns, confirming the carrier mobility of the SnSeP monolayer as the governing parameter for photogenerated charge separation. These results establish SnSeP as a multifunctional material enabling strain-tailored anisotropy for logic transistors, negative differential resistors, and photovoltaic devices, while guiding future investigations on environmental stabilization and heterostructure integration toward practical applications.
在本研究中,我们证明,通过各种密度泛函理论计算结合非平衡格林函数方法发现,SnSeP单层具有本征各向异性电子特性以及载流子输运和光电特性的应变协同调制。计算结果表明,SnSeP单层的y轴单轴压缩会引发间接带隙到直接带隙的转变(采用HSE06计算,从1.73电子伏特变为0.97电子伏特),空穴有效质量降低≥70%,电流密度放大684%。相反,y轴单轴拉伸(+8%)会促进弹道输运(x/y轴电流比>10),可与黑磷相媲美。值得注意的是,在沿SnSeP单层y轴2%的单轴压缩下,会出现显著的负微分电导,其最大Ion/Ioff约为10。实现了可见光谱范围内的各向异性吸收系数(~10⁵ cm⁻¹),其中-4%的y轴应变使光电流密度(在2.45电子伏特时为6.27 μA mm⁻²)和外量子效率(39.2%)超过了许多二维材料的基准。在2.00电子伏特处与空穴有效质量降低模式相关的非单调应变依赖光电流密度峰值,证实了SnSeP单层的载流子迁移率是光生电荷分离的主导参数。这些结果确立了SnSeP作为一种多功能材料,可为逻辑晶体管、负微分电阻器和光伏器件实现应变定制的各向异性,同时为未来针对实际应用的环境稳定性和异质结构集成研究提供指导。