Singh Surabhi, Muniz De Oliveira Fabio, Wang Cong, Kumar Manoj, Xuan Yi, DeMazumder Deeptankar, Sen Chandan K, Roy Sashwati
Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Adv Wound Care (New Rochelle). 2025 Aug;14(8):393-408. doi: 10.1089/wound.2024.0291. Epub 2025 May 13.
To develop scanning electron microscopy-based Trainable Weka (Waikato Environment for Knowledge Analysis) Intelligent Segmentation Technology (SEMTWIST), an open-source software tool, for structural detection and rigorous quantification of wound biofilm aggregates in complex human wound tissue matrix. SEMTWIST model was standardized to quantify biofilm infection (BFI) abundance in 240 distinct SEM images from 60 human chronic wound-edge biospecimens (four technical replicates of each specimen). Results from SEMTWIST were compared against human expert assessments and the gold standard for molecular BFI detection, that is, peptide nucleic acid fluorescence hybridization (PNA-FISH). Correlation and Bland-Altman plot demonstrated a robust correlation ( = 0.82, < 0.01), with a mean bias of 1.25, and 95% limit of agreement ranging from -43.40 to 47.11, between SEMTWIST result and the average scores assigned by trained human experts. While interexpert variability highlighted potential bias in manual assessments, SEMTWIST provided consistent results. Bacterial culture detected infection but not biofilm aggregates. Whereas the wheat germ agglutinin staining exhibited nonspecific staining of host tissue components and failed to provide a specific identification of BFI. The molecular identification of biofilm aggregates using PNA-FISH was comparable with SEMTWIST, highlighting the robustness of the developed approach. This study introduces a novel approach "SEMTWIST" for in-depth analysis and precise differentiation of biofilm aggregates from host tissue elements, enabling accurate quantification of BFI in chronic wound SEM images. Open-source SEMTWIST offers a reliable and robust framework for standardized quantification of BFI burden in human chronic wound-edge tissues, supporting clinical diagnosis and guiding treatment.
为开发基于扫描电子显微镜的可训练怀卡托知识分析环境(Waikato Environment for Knowledge Analysis,Weka)智能分割技术(scanning electron microscopy-based Trainable Weka Intelligent Segmentation Technology,SEMTWIST),一种开源软件工具,用于在复杂的人类伤口组织基质中对伤口生物膜聚集体进行结构检测和精确量化。对SEMTWIST模型进行标准化,以量化来自60个人类慢性伤口边缘生物标本(每个标本4个技术重复)的240张不同扫描电子显微镜(SEM)图像中的生物膜感染(biofilm infection,BFI)丰度。将SEMTWIST的结果与人类专家评估以及分子BFI检测的金标准即肽核酸荧光杂交(peptide nucleic acid fluorescence hybridization,PNA-FISH)进行比较。相关性分析和布兰德-奥特曼图(Bland-Altman plot)显示,SEMTWIST结果与训练有素的人类专家给出的平均分数之间存在强相关性(r = 0.82,P < 0.01),平均偏差为1.25,95%一致性界限为-43.40至47.11。虽然专家间的变异性突出了手动评估中的潜在偏差,但SEMTWIST提供了一致的结果。细菌培养检测到感染,但未检测到生物膜聚集体。而麦胚凝集素染色显示宿主组织成分存在非特异性染色,未能提供BFI的特异性鉴定。使用PNA-FISH对生物膜聚集体进行分子鉴定与SEMTWIST相当,突出了所开发方法的稳健性。本研究引入了一种新方法“SEMTWIST”,用于从宿主组织成分中深入分析和精确区分生物膜聚集体,从而能够在慢性伤口SEM图像中准确量化BFI。开源的SEMTWIST为人类慢性伤口边缘组织中BFI负荷的标准化量化提供了一个可靠且稳健的框架,支持临床诊断并指导治疗。