Suppr超能文献

Lusca:基于 Fiji(ImageJ)的工具,用于对细胞和亚细胞结构进行自动化形态分析。

Lusca: FIJI (ImageJ) based tool for automated morphological analysis of cellular and subcellular structures.

机构信息

Department of Histology and Embryology, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.

Laboratory for Stem Cells, Department for Regenerative Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.

出版信息

Sci Rep. 2024 Mar 28;14(1):7383. doi: 10.1038/s41598-024-57650-6.

Abstract

The human body consists of diverse subcellular, cellular and supracellular structures. Neurons possess varying-sized projections that interact with different cellular structures leading to the development of highly complex morphologies. Aiming to enhance image analysis of complex biological forms including neurons using available FIJI (ImageJ) plugins, Lusca, an advanced open-source tool, was developed. Lusca utilizes machine learning for image segmentation with intensity and size thresholds. It performs particle analysis to ascertain parameters such as area/volume, quantity, and intensity, in addition to skeletonization for determining length, branching, and width. Moreover, in conjunction with colocalization measurements, it provides an extensive set of 29 morphometric parameters for both 2D and 3D analysis. This is a significant enhancement compared to other scripts that offer only 5-15 parameters. Consequently, it ensures quicker and more precise quantification by effectively eliminating noise and discerning subtle details. With three times larger execution speed, fewer false positive and negative results, and the capacity to measure various parameters, Lusca surpasses other existing open-source solutions. Its implementation of machine learning-based segmentation facilitates versatile applications for different cell types and biological structures, including mitochondria, fibres, and vessels. Lusca's automated and precise measurement capability makes it an ideal choice for diverse biological image analyses.

摘要

人体由多种亚细胞、细胞和超细胞结构组成。神经元具有不同大小的突起,与不同的细胞结构相互作用,从而形成高度复杂的形态。为了增强对包括神经元在内的复杂生物形态的图像分析,开发了 Lusca 这个高级的开源工具,它可以利用现有的 FIJI(ImageJ)插件。Lusca 利用机器学习进行基于强度和大小阈值的图像分割。它执行粒子分析,以确定面积/体积、数量和强度等参数,此外还进行骨架化以确定长度、分支和宽度。此外,它还可以与共定位测量相结合,提供广泛的 29 个形态计量参数,用于 2D 和 3D 分析。与仅提供 5-15 个参数的其他脚本相比,这是一个显著的改进。因此,它可以通过有效消除噪声和辨别细微细节,实现更快、更精确的定量分析。Lusca 的执行速度快三倍,假阳性和假阴性结果更少,并且能够测量各种参数,因此优于其他现有的开源解决方案。它基于机器学习的分割实现为包括线粒体、纤维和血管在内的不同细胞类型和生物结构的各种应用提供了便利。Lusca 的自动化和精确测量能力使其成为各种生物图像分析的理想选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10a9/10978859/3548374b59f3/41598_2024_57650_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验