Lu Jiuyu, Ding Junying, Xia Zhuoran, Yang Zhuo, Lv Chengyuan, Zong Shenglin, Cao Jianfang, Zhou Danhong, Long Saran, Sun Wen, Du Jianjun, Fan Jiangli, Peng Xiaojun
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
Department of Gynaecology, Cancer Hospital of Dalian University of Technology; Cancer Hospital of China Medical University; Liaoning Cancer Hospital & Institute, Shenyang 110001, China.
J Am Chem Soc. 2025 May 28;147(21):18100-18109. doi: 10.1021/jacs.5c04111. Epub 2025 May 13.
Improving the photosensitization efficiency represents a critical challenge in photodynamic therapy (PDT) research. While cyanines exhibit potential as photosensitizers (PSs) due to their large extinction coefficients and excellent biocompatibility, the inherent limitations in intersystem crossing severely affect therapeutic efficacy. Herein, we proposed a bottom-up magnetically enhanced photodynamic therapy (magneto-PDT) paradigm employing fluorobenzene-substituted pentamethine cyanine as type-I reactive oxygen species generators. Based on the radical pair mechanism and magnetic field effect, the notable difference in g-factors (Δg) between PSs and oxyradicals enabled magnetically responsive amplification of Cy5-3,4,5-3F-mediated hydroxyl radical (•OH) and superoxide anion radical (O) production, achieving maximum yield enhancements of 66.9 and 28.0% respectively at 500 mT. This magnetically augmented oxyradicals generation exhibited universal cytotoxicity superiority over conventional PDT protocols in various cancer cell models. Notably, the semi-inhibitory concentration (IC) of murine mammary carcinoma 4T1 cells demonstrated a remarkable reduction under both normoxic and hypoxic conditions, with the most pronounced decrease observed in normoxia from 0.91 μM (PDT alone) to 0.38 μM (magneto-PDT). The significantly magneto-enhanced therapeutic performance effectively inhibited orthotopic tumor growth. This magneto-PDT paradigm established a novel strategy for manipulating spin-dependent photosensitization processes in biological applications.
提高光动力疗法(PDT)研究中的光敏化效率是一项关键挑战。虽然花菁由于其大的消光系数和出色的生物相容性而具有作为光敏剂(PSs)的潜力,但系间窜越的固有局限性严重影响治疗效果。在此,我们提出了一种自下而上的磁增强光动力疗法(磁光动力疗法)范式,采用氟苯取代的五甲川花菁作为I型活性氧生成剂。基于自由基对机制和磁场效应,PSs与氧自由基之间g因子(Δg)的显著差异使得Cy5-3,4,5-3F介导的羟基自由基(•OH)和超氧阴离子自由基(O)的产生实现磁响应放大,在500 mT时分别实现了66.9%和28.0%的最大产率提高。这种磁增强的氧自由基生成在各种癌细胞模型中表现出比传统PDT方案普遍的细胞毒性优势。值得注意的是,小鼠乳腺癌4T1细胞的半抑制浓度(IC)在常氧和低氧条件下均显著降低,在常氧条件下观察到最明显的下降,从0.91 μM(单独PDT)降至0.38 μM(磁光动力疗法)。显著的磁增强治疗性能有效地抑制了原位肿瘤生长。这种磁光动力疗法范式为在生物应用中操纵自旋依赖性光敏化过程建立了一种新策略。