Suppr超能文献

相似文献

1
The march to harmonized imaging standards for retinal imaging.
Prog Retin Eye Res. 2025 Jul;107:101363. doi: 10.1016/j.preteyeres.2025.101363. Epub 2025 May 11.
2
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
Cochrane Database Syst Rev. 2015 Jan 7;1(1):CD008081. doi: 10.1002/14651858.CD008081.pub3.
3
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
4
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
Cochrane Database Syst Rev. 2011 Jul 6(7):CD008081. doi: 10.1002/14651858.CD008081.pub2.
5
Artificial intelligence in retinal screening using OCT images: A review of the last decade (2013-2023).
Comput Methods Programs Biomed. 2024 Sep;254:108253. doi: 10.1016/j.cmpb.2024.108253. Epub 2024 May 28.
7
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.
medRxiv. 2025 Jun 27:2025.06.26.25330361. doi: 10.1101/2025.06.26.25330361.
8
Standardization of OCT Angiography Nomenclature in Retinal Vascular Diseases: Consensus-Based Recommendations.
Ophthalmol Retina. 2025 Jul;9(7):645-654. doi: 10.1016/j.oret.2025.01.015. Epub 2025 Jan 31.
9
Artificial intelligence for detecting keratoconus.
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.

本文引用的文献

1
AI-READI: rethinking AI data collection, preparation and sharing in diabetes research and beyond.
Nat Metab. 2024 Dec;6(12):2210-2212. doi: 10.1038/s42255-024-01165-x.
2
Barriers to Extracting and Harmonizing Glaucoma Testing Data: Gaps, Shortcomings, and the Pursuit of FAIRness.
Ophthalmol Sci. 2024 Sep 14;4(6):100621. doi: 10.1016/j.xops.2024.100621. eCollection 2024 Nov-Dec.
3
Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview.
Diagnostics (Basel). 2024 Aug 1;14(15):1668. doi: 10.3390/diagnostics14151668.
4
Artificial Intelligence and Ophthalmic Clinical Registries.
Am J Ophthalmol. 2024 Dec;268:263-274. doi: 10.1016/j.ajo.2024.07.039. Epub 2024 Aug 5.
6
Development of Medical Imaging Data Standardization for Imaging-Based Observational Research: OMOP Common Data Model Extension.
J Imaging Inform Med. 2024 Apr;37(2):899-908. doi: 10.1007/s10278-024-00982-6. Epub 2024 Feb 5.
7
The value of standards for health datasets in artificial intelligence-based applications.
Nat Med. 2023 Nov;29(11):2929-2938. doi: 10.1038/s41591-023-02608-w. Epub 2023 Oct 26.
8
Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives.
Adv Ophthalmol Pract Res. 2022 Aug 24;2(3):100078. doi: 10.1016/j.aopr.2022.100078. eCollection 2022 Nov-Dec.
9
A foundation model for generalizable disease detection from retinal images.
Nature. 2023 Oct;622(7981):156-163. doi: 10.1038/s41586-023-06555-x. Epub 2023 Sep 13.
10
Accuracy of Low-Cost, Smartphone-Based Retinal Photography for Diabetic Retinopathy Screening: A Systematic Review.
Clin Ophthalmol. 2023 Aug 18;17:2459-2470. doi: 10.2147/OPTH.S416422. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验