Neumann Elizabeth K
Chemistry Department, UC Davis, Davis, California, USA.
J Mass Spectrom. 2025 Jun;60(6):e5143. doi: 10.1002/jms.5143.
Dynamic biological processes in the brain involve complex interactions between various cell types, and these interactions span multiple biological scales. Each of these domains are crucial in maintaining brain health. Traditional methods, such as transcriptomics and protein labeling, provide valuable insights but fail to capture the full molecular landscape of neurological function. Multimodal imaging, combining multiple imaging techniques, offers a more comprehensive approach to studying biological systems by integrating different omics technologies. Spatial metabolomics involves using techniques like mass spectrometry imaging to enable detection of metabolites within their native tissue context and reveals functional roles that are crucial for understanding disease. Spatial transcriptomics and proteomics contribute information on gene expression and protein function but face challenges in resolution and integration with other omics approaches. Combining metabolomics, transcriptomics, and proteomics will enhance our understanding of cellular interactions, but challenges remain in optimizing sample preparation, maintaining molecular integrity, and integrating data across omics layers. Future advancements in spatial multiomics, incorporating epigenetics and extending to whole-body or nanoscale imaging, will significantly advance our understanding of neuroscience and complex diseases like Alzheimer's disease or autism spectrum disorder.
大脑中的动态生物过程涉及多种细胞类型之间的复杂相互作用,这些相互作用跨越多个生物尺度。这些领域中的每一个对于维持大脑健康都至关重要。传统方法,如转录组学和蛋白质标记,提供了有价值的见解,但未能捕捉到神经功能的完整分子图景。多模态成像结合了多种成像技术,通过整合不同的组学技术,为研究生物系统提供了一种更全面的方法。空间代谢组学涉及使用质谱成像等技术,以便在其原生组织环境中检测代谢物,并揭示对于理解疾病至关重要的功能作用。空间转录组学和蛋白质组学提供了有关基因表达和蛋白质功能的信息,但在分辨率以及与其他组学方法的整合方面面临挑战。将代谢组学、转录组学和蛋白质组学结合起来将增强我们对细胞相互作用的理解,但在优化样品制备、保持分子完整性以及跨组学层面整合数据方面仍然存在挑战。空间多组学的未来进展,包括纳入表观遗传学并扩展到全身或纳米尺度成像,将显著推进我们对神经科学以及像阿尔茨海默病或自闭症谱系障碍等复杂疾病的理解。