Suppr超能文献

利用生成式人工智能在细胞分辨率下将骨细胞中的转录组与形态学联系起来。

Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.

作者信息

Lu Lu, Ono Noriaki, Welch Joshua D

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave. Ann Arbor, MI 48109, United States.

Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, 1941 East Road, Houston, TX 77054, United States.

出版信息

J Bone Miner Res. 2024 Dec 31;40(1):20-26. doi: 10.1093/jbmr/zjae151.

Abstract

Recent advancements in deep learning (DL) have revolutionized the capability of artificial intelligence (AI) by enabling the analysis of large-scale, complex datasets that are difficult for humans to interpret. However, large amounts of high-quality data are required to train such generative AI models successfully. With the rapid commercialization of single-cell sequencing and spatial transcriptomics platforms, the field is increasingly producing large-scale datasets such as histological images, single-cell molecular data, and spatial transcriptomic data. These molecular and morphological datasets parallel the multimodal text and image data used to train highly successful generative AI models for natural language processing and computer vision. Thus, these emerging data types offer great potential to train generative AI models that uncover intricate biological processes of bone cells at a cellular level. In this Perspective, we summarize the progress and prospects of generative AI applied to these datasets and their potential applications to bone research. In particular, we highlight three AI applications: predicting cell differentiation dynamics, linking molecular and morphological features, and predicting cellular responses to perturbations. To make generative AI models beneficial for bone research, important issues, such as technical biases in bone single-cell datasets, lack of profiling of important bone cell types, and lack of spatial information, needs to be addressed. Realizing the potential of generative AI for bone biology will also likely require generating large-scale, high-quality cellular-resolution spatial transcriptomics datasets, improving the sensitivity of current spatial transcriptomics datasets, and thorough experimental validation of model predictions.

摘要

深度学习(DL)的最新进展通过能够分析人类难以解读的大规模复杂数据集,彻底改变了人工智能(AI)的能力。然而,要成功训练此类生成式AI模型,需要大量高质量的数据。随着单细胞测序和空间转录组学平台的迅速商业化,该领域越来越多地产生大规模数据集,如组织学图像、单细胞分子数据和空间转录组学数据。这些分子和形态学数据集与用于训练自然语言处理和计算机视觉方面非常成功的生成式AI模型的多模态文本和图像数据相似。因此,这些新兴的数据类型为训练生成式AI模型提供了巨大潜力,这些模型能够在细胞水平上揭示骨细胞复杂的生物学过程。在这篇观点文章中,我们总结了生成式AI应用于这些数据集的进展和前景,以及它们在骨研究中的潜在应用。特别地,我们重点介绍了三种AI应用:预测细胞分化动力学、关联分子和形态学特征以及预测细胞对扰动的反应。为了使生成式AI模型对骨研究有益,一些重要问题需要得到解决,比如骨单细胞数据集中的技术偏差、重要骨细胞类型缺乏分析以及缺乏空间信息。实现生成式AI在骨生物学中的潜力可能还需要生成大规模、高质量的细胞分辨率空间转录组学数据集,提高当前空间转录组学数据集的灵敏度,并对模型预测进行全面的实验验证。

相似文献

5
Artificial intelligence for detecting keratoconus.人工智能在圆锥角膜检测中的应用。
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.

本文引用的文献

3
Large-scale foundation model on single-cell transcriptomics.单细胞转录组学的大规模基础模型。
Nat Methods. 2024 Aug;21(8):1481-1491. doi: 10.1038/s41592-024-02305-7. Epub 2024 Jun 6.
8
Disentanglement of single-cell data with biolord.基于 Biolord 的单细胞数据解缠
Nat Biotechnol. 2024 Nov;42(11):1678-1683. doi: 10.1038/s41587-023-02079-x. Epub 2024 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验