Qian Jinhua, Chi Qinjie, Zhu Li, Zhang Tianhao, Ding Wenbing, Yuan Ruifan, Chen Zhuo, Wang Tianle
Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong 226600, China; Department of Intervention, Affiliated Hospital 2 of Nantong University, Nantong 226600, China.
Department of Intervention, Affiliated Hospital 2 of Nantong University, Nantong 226600, China.
Acad Radiol. 2025 Aug;32(8):4807-4817. doi: 10.1016/j.acra.2025.04.051. Epub 2025 May 12.
This study aimed to evaluate the prognostic value of combined carotid plaque reporting and data system (RADS) score and pericarotid fat density (PFD) for predicting stroke recurrence risk, and to explore its utility in stroke risk stratification.
We developed a novel binary comprehensive risk index (CRI) that integrates the carotid plaque-RADS and PFD: low CRI (RADS <3 and PFD ≤ -74 HU) and high CRI (RADS ≥3 or PFD > -74 HU). Net reclassification improvement, Kaplan-Meier survival analysis, multivariate logistic regression, receiver operating characteristic curves (ROC), and decision curve analysis (DCA) were used to assess the predictive value of CRI over stenosis degree.
During a mean follow-up period of 17.24±11.93 months, 64 of 272 patients (23.3%) experienced recurrent stroke. CRI significantly improved stroke recurrence risk stratification in mild-to-moderate stenosis patients. Kaplan-Meier survival analysis revealed significant differences in stroke recurrence rates across varying plaque-RADS and CRI (P < 0.0001). Independent predictors of stroke recurrence included plaque-RADS ≥ 3 (OR=2.68, 95% CI: 1.03-6.96), CRI (OR=8.25, 95% CI: 2.23-30.44), affected-side PFD (OR=0.97, 95% CI: 0.94-0.99), and bilateral PFD difference (OR=1.09, 95% CI: 1.05-1.13). The combined model incorporating stenosis degree, plaque-RADS, affected-side PFD, bilateral PFD difference, and CRI demonstrated superior prediction performance, achieving an area under the ROC curve of 0.892.
Integrating carotid plaque-RADS and PFD significantly enhances the accuracy of stroke recurrence risk prediction, especially in patients with mild-to-moderate stenosis. This combined assessment model provides valuable insights for personalized prevention and treatment strategies for stroke recurrence.
本研究旨在评估联合颈动脉斑块报告和数据系统(RADS)评分及颈动脉周围脂肪密度(PFD)对预测卒中复发风险的预后价值,并探讨其在卒中风险分层中的效用。
我们开发了一种新型二元综合风险指数(CRI),该指数整合了颈动脉斑块RADS和PFD:低CRI(RADS <3且PFD≤-74 HU)和高CRI(RADS≥3或PFD > -74 HU)。采用净重新分类改善、Kaplan-Meier生存分析、多因素逻辑回归、受试者工作特征曲线(ROC)和决策曲线分析(DCA)来评估CRI相对于狭窄程度的预测价值。
在平均随访期17.24±11.93个月期间,272例患者中有64例(23.3%)发生复发性卒中。CRI显著改善了轻至中度狭窄患者的卒中复发风险分层。Kaplan-Meier生存分析显示,不同斑块RADS和CRI的卒中复发率存在显著差异(P < 0.0001)。卒中复发的独立预测因素包括斑块RADS≥3(OR=2.68,95%CI:1.03-6.96)、CRI(OR=8.25,95%CI:2.23-30.44)、患侧PFD(OR=0.97,95%CI:0.94-0.99)和双侧PFD差值(OR=1.09,95%CI:1.05-1.13)。纳入狭窄程度、斑块RADS、患侧PFD、双侧PFD差值和CRI的联合模型显示出卓越的预测性能,ROC曲线下面积为0.892。
整合颈动脉斑块RADS和PFD可显著提高卒中复发风险预测的准确性,尤其是在轻至中度狭窄患者中。这种联合评估模型为卒中复发的个性化预防和治疗策略提供了有价值的见解。