Suppr超能文献

用于广角扫描阵列的广角阻抗匹配结构的机器学习驱动设计。

Machine learning-driven design of wide-angle impedance matching structures for wide-angle scanning arrays.

作者信息

Hasibi Taheri Sina, Mohammadpour Javad, Lalbakhsh Ali, Koziel Slawomir, Szczepanski Stanislaw

机构信息

School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.

Department of Engineering, Engineering Optimization and Modeling Center, Reykjavik University, 102, Reykjavik, Iceland.

出版信息

Sci Rep. 2025 May 13;15(1):16601. doi: 10.1038/s41598-025-00310-0.

Abstract

This paper introduces a versatile and efficient design methodology for optimizing wide-angle impedance matching (WAIM) configurations, enhancing the scanning range of arbitrary antenna arrays. The three-layered structure is modeled using the generalized scattering matrices (GSMs) of the layers, incorporating sufficient excited modes for efficient input impedance calculation. To broaden the method's applicability and meet manufacturing requirements, it also considers dielectric materials other than air between the array and WAIM. Machine learning (ML) algorithms are integrated to evaluate WAIM characteristics, reducing calculation time and resources while enhancing adaptability to new structures with minimal designer intervention. Decision Tree-based models are chosen to provide accurate prediction while minimizing the dataset preparation time. The methodology involves training a network using three ML algorithms, including decision tree, bagging, and random forest. Optimal WAIM parameters are efficiently determined using a genetic algorithm (GA). Three matching layers are designed and validated for several arrays operating at the frequency range between 9 and 11 GHz. The random forest model shows the best performance in predicting the WAIM behavior, with RMSE, [Formula: see text] scores, MAPE of 0.033, 0.916, and 2.161, respectively. Results demonstrate that the designed WAIMs effectively enhance the scanning range of both microstrip and waveguide arrays within the desired frequency range. The method achieves a calculation time of 0.3 s per angle, significantly faster than previous approaches, with a total runtime under an hour and minimal RAM usage (9.7 MB). This method offers an efficient framework for developing tools to design wide-angle scanning arrays and expand their applications.

摘要

本文介绍了一种通用且高效的设计方法,用于优化广角阻抗匹配(WAIM)配置,扩大任意天线阵列的扫描范围。使用各层的广义散射矩阵(GSM)对三层结构进行建模,纳入足够的激发模式以进行高效的输入阻抗计算。为了拓宽该方法的适用性并满足制造要求,它还考虑了阵列与WAIM之间除空气之外的介电材料。集成机器学习(ML)算法来评估WAIM特性,减少计算时间和资源,同时以最少的设计者干预增强对新结构的适应性。选择基于决策树的模型以提供准确预测,同时最小化数据集准备时间。该方法涉及使用三种ML算法(包括决策树、装袋法和随机森林)训练网络。使用遗传算法(GA)有效地确定最佳WAIM参数。针对在9至11 GHz频率范围内工作的几个阵列设计并验证了三个匹配层。随机森林模型在预测WAIM行为方面表现最佳,均方根误差(RMSE)、[公式:见原文]得分、平均绝对百分比误差(MAPE)分别为0.033、0.916和2.161。结果表明,所设计的WAIM在所需频率范围内有效地扩大了微带和波导阵列的扫描范围。该方法实现了每个角度0.3秒的计算时间,比以前的方法快得多,总运行时间不到一小时,且内存使用量最小(9.7 MB)。该方法为开发用于设计广角扫描阵列并扩展其应用的工具提供了一个高效的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/12075861/d619e63737f9/41598_2025_310_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验