Suppr超能文献

使用具有降维替代模型的机器学习进行天线优化。

Antenna optimization using machine learning with reduced-dimensionality surrogates.

作者信息

Koziel Slawomir, Pietrenko-Dabrowska Anna, Leifsson Leifur

机构信息

Engineering Optimization and Modeling Center, Reykjavik University, 101, Reykjavík, Iceland.

Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233, Gdańsk, Poland.

出版信息

Sci Rep. 2024 Sep 16;14(1):21567. doi: 10.1038/s41598-024-72478-w.

Abstract

In modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM) simulation models using conventional nature-inspired methods entails significant computational costs. Alternatively, surrogate-based techniques show promise but are impeded by dimensionality-related challenges and nonlinearity of antenna outputs. This study introduces an innovative technique for swiftly optimizing antennas. It leverages a machine learning framework with an infill criterion employing predicted enhancement of the merit function, utilizing a particle swarm optimizer as the primary search engine, and employs kriging for constructing the underlying surrogate model. The surrogate model operates within a reduced-dimensionality domain, guided by directions corresponding to maximum antenna response variability identified through fast global sensitivity analysis, tailored explicitly for domain determination. Operating within this reduced domain enables building dependable metamodels at a significantly lower computational cost. To address accuracy loss resulting from dimensionality reduction, the global optimization phase is supplemented by local sensitivity-based parameter adjustment. Extensive comparative experiments involving various planar antennas demonstrate the competitive operation of the presented technique over machine learning algorithms operating in full-dimensionality space and direct EM-driven bio-inspired optimization techniques.

摘要

在现代,天线设计的要求比以往任何时候都更高。对性能和功能不断升级的需求推动了结构复杂的天线的发展,在这种天线中,参数必须经过精心调整才能实现最佳性能。通常,为了获得最佳结果,需要对几何形状进行全局调整。然而,使用传统的自然启发方法直接操纵通过全波电磁(EM)仿真模型评估的天线响应会带来巨大的计算成本。另外,基于代理的技术显示出了前景,但受到与维度相关的挑战和天线输出的非线性的阻碍。本研究介绍了一种用于快速优化天线的创新技术。它利用一个机器学习框架,该框架具有一个填充准则,该准则采用优点函数的预测增强,使用粒子群优化器作为主要搜索引擎,并采用克里金法构建底层代理模型。代理模型在降维域内运行,由通过快速全局敏感性分析确定的与最大天线响应变异性相对应的方向引导,该分析是专门为域确定而定制的。在这个缩小的域内运行能够以显著更低的计算成本构建可靠的元模型。为了解决因降维导致的精度损失问题,全局优化阶段通过基于局部敏感性的参数调整来补充。涉及各种平面天线的大量对比实验表明,所提出的技术在全维空间中运行的机器学习算法和直接的电磁驱动生物启发优化技术方面具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d8/11410808/afd8247c6147/41598_2024_72478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验