Saraithong Prakaimuk, Krajcarski Peyton, Kusaka Yukako, Yamada Moe, Matsumoto Junichi, Cunningham Hailey, Salih Sama, Jones Darby, Baddhan Devika, Hausner Christian, Anumonwo Justus, Rosenzweig Anthony, Navarro Mary M, Diaz Luis Villa, Criscione Joseph, Kim Deok-Ho, Herron Todd J
Frankel Cardiovascular Regeneration Core Laboratory University of Michigan, Ann Arbor, MI, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
Commun Biol. 2025 May 13;8(1):745. doi: 10.1038/s42003-025-08162-0.
Current methods for producing cardiomyocytes from human induced pluripotent stem cells (hiPSCs) using 2D monolayer differentiation are often hampered by batch-to-batch variability and inefficient purification processes. Here, we introduce CM-AI, a novel artificial intelligence-guided laser cell processing platform designed for rapid, label-free purification of hiPSC-derived cardiomyocytes (hiPSC-CMs). This approach significantly reduces processing time without the need for chronic metabolic selection or antibody-based sorting. By integrating real-time cellular morphology analysis and targeted laser ablation, CM-AI selectively removes non-cardiomyocyte populations with high precision. This streamlined process preserves cardiomyocyte viability and function, offering a scalable and efficient solution for cardiac regenerative medicine, disease modeling, and drug discovery.
目前使用二维单层分化从人诱导多能干细胞(hiPSC)中产生心肌细胞的方法常常受到批次间差异和低效纯化过程的阻碍。在此,我们引入了CM-AI,这是一种新型的人工智能引导激光细胞处理平台,旨在快速、无标记地纯化hiPSC衍生的心肌细胞(hiPSC-CM)。这种方法显著减少了处理时间,无需长期代谢筛选或基于抗体的分选。通过整合实时细胞形态分析和靶向激光消融,CM-AI能够高精度地选择性去除非心肌细胞群体。这种简化的过程保留了心肌细胞的活力和功能,为心脏再生医学、疾病建模和药物发现提供了一种可扩展且高效的解决方案。
Differentiation. 2016
Methods Mol Biol. 2024
ACS Appl Mater Interfaces. 2019-1-22
Proc Natl Acad Sci U S A. 2024-10
Biol Psychiatry Glob Open Sci. 2024-2-20