Santi Nicolò, Piccirilli Alessandra, Corsini Federico, Taracila Magdalena A, Perilli Mariagrazia, Bonomo Robert A, Fini Francesco, Prati Fabio, Caselli Emilia
Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy.
Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, via Vetoio, 67100 L'Aquila, Italy.
Int J Mol Sci. 2025 Apr 28;26(9):4182. doi: 10.3390/ijms26094182.
In this study, we evaluated in situ click chemistry as a platform for discovering boronic acid-based β-lactamase inhibitors (BLIs). Unlike conventional drug discovery approaches requiring multi-step synthesis, protection strategies, and extensive screening, the in situ method can allow for the generation and identification of potent β-lactamase inhibitors in a rapid, economic, and efficient way. Using KPC-2 (class A carbapenemase) and AmpC (class C cephalosporinase) as templates, we demonstrated their ability to catalyse azide-alkyne cycloaddition, facilitating the formation of triazole-based β-lactamase inhibitors. Initial screening of various β-lactamases and boronic warheads identified compound (3-azidomethylphenyl boronic acid) as the most effective scaffold for kinetic target-guided synthesis (KTGS). KTGS experiments with AmpC and KPC-2 yielded triazole inhibitors with values as low as 140 nM (compound , AmpC) and 730 nM (compound , KPC-2). Competitive inhibition studies confirmed triazole formation within the active site, while an LC-MS analysis verified that the reversible covalent interaction of boronic acids did not affect detection of the in situ-synthesised product. While KTGS successfully identified potent inhibitors, limitations in amplification coefficients and spatial constraints highlight the need for optimised warhead designs. This study validates KTGS as a promising strategy for BLI discovery and provides insights for further refinement in fighting β-lactamase-mediated antibiotic resistance.
在本研究中,我们评估了原位点击化学作为发现基于硼酸的β-内酰胺酶抑制剂(BLIs)的平台。与需要多步合成、保护策略和广泛筛选的传统药物发现方法不同,原位方法能够以快速、经济且高效的方式生成并鉴定强效β-内酰胺酶抑制剂。以KPC-2(A类碳青霉烯酶)和AmpC(C类头孢菌素酶)为模板,我们证明了它们催化叠氮化物-炔烃环加成反应的能力,促进了基于三唑的β-内酰胺酶抑制剂的形成。对各种β-内酰胺酶和硼酸弹头的初步筛选确定化合物(3-叠氮甲基苯基硼酸)是动力学靶点导向合成(KTGS)最有效的支架。用AmpC和KPC-2进行的KTGS实验产生了低至140 nM(化合物,AmpC)和730 nM(化合物,KPC-2)的三唑抑制剂。竞争性抑制研究证实了活性位点内三唑的形成,并通过LC-MS分析验证了硼酸的可逆共价相互作用不影响原位合成产物的检测。虽然KTGS成功鉴定出了强效抑制剂,但扩增系数和空间限制方面的局限性突出了优化弹头设计的必要性。本研究验证了KTGS作为发现BLI的一种有前景的策略,并为进一步对抗β-内酰胺酶介导的抗生素耐药性提供了改进思路。