Suppr超能文献

用于锂离子电池的聚苯硫醚基隔膜的最新进展

Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries.

作者信息

Wan Lianlu, Zhou Haitao, Zhou Haiyun, Gu Jie, Wang Chen, Liao Quan, Gao Hongquan, Wu Jianchun, Huo Xiangdong

机构信息

School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

Jiangsu Tongling Electric Co., Ltd., Zhenjiang 212200, China.

出版信息

Polymers (Basel). 2025 Apr 30;17(9):1237. doi: 10.3390/polym17091237.

Abstract

Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid-liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage.

摘要

聚苯硫醚(PPS)基隔膜作为下一代锂离子电池(LIB)的高性能组件受到了广泛关注,这得益于其出色的热稳定性(>260°C)、化学惰性和机械耐久性。本综述全面考察了PPS隔膜设计的进展,重点关注两种结构不同的类型:通过湿化学方法(如熔喷纺丝、静电纺丝、热致相分离)设计的多孔隔膜,以及通过无溶剂干膜工艺制造的无孔固态隔膜。以亚微米级孔结构(<1μm)为代表的多孔变体,在孔隙率>55%时可实现电解质介导的离子传输,离子电导率高达>1 mS·cm,而其无孔对应物则利用结晶硫原子排列和微量电解质渗透来建立固液双相传导途径,实现离子迁移数>0.8和锂通量均匀化。干法制得的固态PPS隔膜表现出无与伦比的热尺寸稳定性(在280°C时收缩率<2%),并通过均匀的电场分布减轻枝晶生长,COMSOL模拟显示在铜颗粒污染下锂沉积稳定即证明了这一点。尽管取得了这些进展,但在协调厚度限制(<25μm)与机械强度、扩大无溶剂制造规模以及降低成本方面仍存在挑战。具有自愈聚合物网络的超薄形式(<20μm)的创新,以及与钠/锌离子系统的兼容性扩展,被认为是推进PPS隔膜发展的关键途径。通过应对这些挑战,基于PPS的架构对于实现高能量密度(>500 Wh·kg)、本质安全的储能系统具有变革潜力,特别是在电动汽车和电网规模储能等要求极高运行可靠性的应用中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8b/12073824/0df2897ee4e5/polymers-17-01237-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验