Suppr超能文献

基于多策略采样快速扩展随机树的大型多臂凿岩机器人高精度运动规划研究

Research on High-Precision Motion Planning of Large Multi-Arm Rock Drilling Robot Based on Multi-Strategy Sampling Rapidly Exploring Random Tree.

作者信息

Xu Qiaoyu, Lin Yansong

机构信息

College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471000, China.

出版信息

Sensors (Basel). 2025 Apr 22;25(9):2654. doi: 10.3390/s25092654.

Abstract

In addressing the optimal motion planning issue for multi-arm rock drilling robots, this paper introduces a high-precision motion planning method based on Multi-Strategy Sampling RRT* (MSS-RRT*). A dual Jacobi iterative inverse solution method, coupled with a forward kinematics error compensation model, is introduced to dynamically correct target positions, improving end-effector positioning accuracy. A multi-strategy sampling mechanism is constructed by integrating DRL position sphere sampling, spatial random sampling, and goal-oriented sampling. This mechanism flexibly applies three sampling methods at different stages of path planning, significantly improving the adaptability and search efficiency of the RRT* algorithm. In particular, DRL position sphere sampling is prioritized during the initial phase, effectively reducing the number of invalid sampling points. For training a three-arm DRL model with the twin delayed deep deterministic policy gradient algorithm (TD3), the Hindsight Experience Replay-Obstacle Arm Transfer (HER-OAT) method is used for data replay. The cylindrical bounding box method effectively prevents collisions between arms. The experimental results show that the proposed method improves motion planning accuracy by 94.15% compared to a single Jacobi iteration. MSS-RRT* can plan a superior path in a shorter duration, with the planning time under optimal path conditions being only 20.71% of that required by Informed-RRT*, and with the path length reduced by 21.58% compared to Quick-RRT* under the same time constraints.

摘要

在解决多臂凿岩机器人的最优运动规划问题时,本文介绍了一种基于多策略采样RRT*(MSS-RRT*)的高精度运动规划方法。引入了一种双雅可比迭代逆解方法,并结合正向运动学误差补偿模型,以动态校正目标位置,提高末端执行器的定位精度。通过整合深度强化学习(DRL)位置球采样、空间随机采样和目标导向采样构建了一种多策略采样机制。该机制在路径规划的不同阶段灵活应用三种采样方法,显著提高了RRT算法的适应性和搜索效率。特别是,在初始阶段优先使用DRL位置球采样,有效减少了无效采样点的数量。为了使用双延迟深度确定性策略梯度算法(TD3)训练三臂DRL模型,采用了后见经验回放-障碍物手臂转移(HER-OAT)方法进行数据回放。圆柱包围盒方法有效防止了手臂之间的碰撞。实验结果表明,与单雅可比迭代相比,所提方法的运动规划精度提高了94.15%。MSS-RRT能够在更短的时间内规划出更优路径,在最优路径条件下的规划时间仅为智能RRT所需时间的20.71%,并且在相同时间约束下,路径长度比快速RRT减少了21.58%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2714/12074004/ac20b48a015a/sensors-25-02654-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验