Suppr超能文献

基于粒子群优化-反向传播神经网络的层状MOS传感器对沙林模拟物DMMP的识别

Identification of Sarin Simulant DMMP Based on a Laminated MOS Sensor Using Article Swarm Optimization-Backpropagation Neural Network.

作者信息

Liang Ting, Qi Yelin, Cao Shuya, Yan Rui, Gu Jin, Liu Yadong

机构信息

Institute of NBC Defence, Beijing 102205, China.

State Key Laboratory of Chemistry for NBC Hazards Protection, Beijing 102205, China.

出版信息

Sensors (Basel). 2025 Apr 25;25(9):2734. doi: 10.3390/s25092734.

Abstract

A Pt@CeLaCoNiOx/Co@SnO laminated MOS sensor was prepared using Co@SnO as the gas-sensitive film material and Pt@CeLaCoNiOx as the catalytic film material. The sensor was verified to exhibit good sensing performances for dimethyl methylphosphonate, a simulant of Sarin, under a temperature modulation, and characteristic peaks appeared in the resistance response curves only for dimethyl methylphosphonate. The Article Swarm Optimization-Backpropagation Neural Network had a good ability to identify the resistance response data of dimethyl methylphosphonate. The identification accuracy increased as the concentration of dimethyl methylphosphonate increased. This scheme can effectively identify whether the test gas contained dimethyl methylphosphonate or not, which provided a reference for achieving the high selectivity of the MOS sensor for Sarin.

摘要

以Co@SnO作为气敏薄膜材料、Pt@CeLaCoNiOx作为催化薄膜材料制备了一种Pt@CeLaCoNiOx/Co@SnO层状MOS传感器。经证实,该传感器在温度调制下对沙林模拟物甲基膦酸二甲酯表现出良好的传感性能,且仅甲基膦酸二甲酯的电阻响应曲线出现特征峰。粒子群优化-反向传播神经网络具有良好的识别甲基膦酸二甲酯电阻响应数据的能力。随着甲基膦酸二甲酯浓度的增加,识别准确率提高。该方案能够有效识别测试气体中是否含有甲基膦酸二甲酯,为实现MOS传感器对沙林的高选择性提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c8/12074162/465b2703ee42/sensors-25-02734-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验