Suppr超能文献

基于使用Q学习卡尔曼滤波器的姿态加角速率匹配的航天器间快速转移对准

Inter-Spacecraft Rapid Transfer Alignment Based on Attitude Plus Angular Rate Matching Using Q-Learning Kalman Filter.

作者信息

Xiong Kai, Zhou Peng, Huang Xiangyu

机构信息

Science and Technology on Space Intelligent Control Laboratory, Beijing Institute of Control Engineering, Beijing 100190, China.

出版信息

Sensors (Basel). 2025 Apr 27;25(9):2774. doi: 10.3390/s25092774.

Abstract

This study focuses on the transfer alignment issue between a master spacecraft and a slave spacecraft for the scenario in which the slave spacecraft is mounted on the master satellite before release and should be ready to depart and perform its space mission independently. The challenge of the transfer alignment is to estimate the attitude and calibration parameters of the gyroscope unit (GU) on the slave spacecraft based on the attitude determination system (ADS) of the master spacecraft. To improve the accuracy and rapidity of the transfer alignment, a novel attitude plus angular rate matching scheme is presented using fused sensor information on the master spacecraft. Accordingly, a fifteen-dimensional state-space model is derived to estimate the spacecraft attitude, the GU bias, scale factor error and misalignment simultaneously. A Q-learning Kalman filter (QKF) is designed to fine tune the process noise covariance matrix related to the calibration parameters, which benefits the state estimation performance. The simulation results show that the presented attitude plus angular rate matching scheme performs better than the traditional attitude matching scheme, and the QKF outperforms the standard Kalman filter (KF) and the adaptive Kalman filter (AKF).

摘要

本研究聚焦于主航天器与从航天器之间的传递对准问题,该场景中从航天器在释放前安装在主卫星上,并应准备好独立出发执行其太空任务。传递对准的挑战在于基于主航天器的姿态确定系统(ADS)估计从航天器上陀螺仪单元(GU)的姿态和校准参数。为提高传递对准的精度和速度,利用主航天器上的融合传感器信息提出了一种新颖的姿态加角速率匹配方案。相应地,推导了一个十五维状态空间模型,以同时估计航天器姿态、GU偏差、比例因子误差和失准。设计了一种Q学习卡尔曼滤波器(QKF)来微调与校准参数相关的过程噪声协方差矩阵,这有利于状态估计性能。仿真结果表明,所提出的姿态加角速率匹配方案比传统姿态匹配方案表现更好,且QKF优于标准卡尔曼滤波器(KF)和自适应卡尔曼滤波器(AKF)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a278/12074477/e404b44ab458/sensors-25-02774-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验