Suppr超能文献

考虑驾驶员随机性和网联自动驾驶车辆连接不确定性的混合交通流建模与分析

Modeling and Analysis of Mixed Traffic Flow Considering Driver Stochasticity and CAV Connectivity Uncertainty.

作者信息

Zeng Qi, Hao Siyuan, Zhao Nale, Liu Ruiche

机构信息

College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.

Research Institute of Highway, Key Laboratory of Road Safety Technologies, Ministry of Transport, Beijing 100088, China.

出版信息

Sensors (Basel). 2025 Apr 29;25(9):2806. doi: 10.3390/s25092806.

Abstract

As connected and autonomous vehicle (CAV) technologies are rapidly integrated into modern transportation systems, understanding the dynamics of mixed traffic flow involving both human-driven vehicles (HVs) and CAVs is becoming increasingly important, particularly under uncertain conditions. In this paper, we propose a car-following model framework to investigate the combined effects of driver stochasticity and connectivity uncertainties of CAVs on mixed traffic flow. The proposed framework can capture the inherent stochastic variations in human driving behavior by extending the classic intelligent driver model (IDM) with a Langevin-type stochastic differential equation. A car-following model with multi-anticipation control is developed for CAVs, explicitly incorporating sensor noise, communication delays, and dynamic connectivity. Extensive numerical simulations demonstrate that higher CAV penetration leads to more stable traffic flows. Even with certain levels of connectivity uncertainty, CAVs can still effectively stabilize the traffic. However, driver stochasticity has a pronounced impact on traffic stability-greater variability in driver behavior tends to reduce overall stability. Furthermore, sensitivity analyses reveal that in pure CAV environments, sensor noise, communication delays and communication ranges can affect traffic stability and energy consumption. In contrast, in mixed traffic conditions, the inherent instability of HV behavior tends to dominate and diminish the relative influence of CAV connectivity-related uncertainties. These findings underscore the necessity of robust sensor fusion and error compensation strategies to fully realize the potential of CAV technology. In mixed traffic environments, measures should be taken to minimize the adverse effects of HVs on CAV performance.

摘要

随着联网自动驾驶车辆(CAV)技术迅速融入现代交通系统,了解涉及人类驾驶车辆(HV)和CAV的混合交通流动态变得越来越重要,尤其是在不确定条件下。在本文中,我们提出了一个跟驰模型框架,以研究驾驶员随机性和CAV的连通性不确定性对混合交通流的综合影响。所提出的框架通过用朗之万型随机微分方程扩展经典智能驾驶员模型(IDM),可以捕捉人类驾驶行为中固有的随机变化。为CAV开发了一种具有多预期控制的跟驰模型,明确纳入了传感器噪声、通信延迟和动态连通性。大量数值模拟表明,更高的CAV渗透率会导致更稳定的交通流。即使存在一定程度的连通性不确定性,CAV仍然可以有效地稳定交通。然而,驾驶员随机性对交通稳定性有显著影响——驾驶员行为的更大变异性往往会降低整体稳定性。此外,敏感性分析表明,在纯CAV环境中,传感器噪声、通信延迟和通信范围会影响交通稳定性和能源消耗。相比之下,在混合交通条件下,HV行为的固有不稳定性往往占主导地位,并削弱与CAV连通性相关的不确定性的相对影响。这些发现强调了强大的传感器融合和误差补偿策略对于充分实现CAV技术潜力的必要性。在混合交通环境中,应采取措施尽量减少HV对CAV性能的不利影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab14/12074497/97a405a723c3/sensors-25-02806-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验