Suppr超能文献

通过硼取代调节金刚烷的能级

Tuning the Energy Levels of Adamantane by Boron Substitution.

作者信息

Yusuf Aminu H, Golovko Vladimir B, Masters Sarah L

机构信息

School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.

出版信息

Molecules. 2025 Apr 29;30(9):1976. doi: 10.3390/molecules30091976.

Abstract

Adamantane is known to have two different carbon environments, the C1-type (or bridgehead) and C2-type (or methylene bridge), serving as a foundation to explore the effects of boron substitution at these sites. Using DFT with B3LYP/6-31G(d), the structural, electronic, and optical properties of 37 boron-substituted isomers were investigated. The adamantane structure has rigid symmetry with an average C-C of 153.7 pm, which progressively transforms to and symmetry in heavily substituted isomers. Analysis of the neutral and ionic species reveals a critical transition from electron-donating to electron-accepting behaviour at tri-boron substitution, confirmed by both DFT and coupled cluster calculations (CCSD(T)/CC-pVDZ). C1 substitution narrows the HOMO-LUMO gap significantly, achieving a 56% reduction compared to 44.5% for C2 substitution in tetra-bora derivatives compared to adamantane. Optical properties [CAM-B3LYP/6-311G(d,p)] show systematic red shifting with increasing boron substitution, with absorption maxima moving from 146 nm in pristine adamantane to 423 nm (C1) and 277 nm (C2) in heavily boron-substituted derivatives (tetra-bora-adamantane). While C1 substitution leads to symmetry-forbidden transitions, C2 substitution maintains allowed transitions, offering more consistent optical behaviour. These findings provide important insight for the design of adamantane-based materials with tailored electronic and optical properties.

摘要

金刚烷已知有两种不同的碳环境,即C1型(或桥头)和C2型(或亚甲基桥),这为探索这些位点硼取代的影响奠定了基础。使用B3LYP/6 - 31G(d)的密度泛函理论(DFT),研究了37种硼取代异构体的结构、电子和光学性质。金刚烷结构具有刚性对称性,平均C - C键长为153.7皮米,在高度取代的异构体中逐渐转变为[此处原文缺失相关对称性描述]对称性。对中性和离子物种的分析表明,在三硼取代时从供电子行为到吸电子行为存在关键转变,这由DFT和耦合簇计算(CCSD(T)/CC - pVDZ)所证实。与金刚烷相比,在四硼衍生物中,C1取代显著缩小了最高已占分子轨道(HOMO) - 最低未占分子轨道(LUMO)能隙,降低了56%,而C2取代降低了44.5%。光学性质[CAM - B3LYP/6 - 311G(d,p)]显示随着硼取代增加有系统的红移,吸收最大值从原始金刚烷中的146纳米移动到高度硼取代衍生物(四硼金刚烷)中的423纳米(C1)和277纳米(C2)。虽然C1取代导致对称性禁阻跃迁,但C2取代保持允许跃迁,呈现出更一致的光学行为。这些发现为设计具有定制电子和光学性质的金刚烷基材料提供了重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2326/12073632/afb561ba6675/molecules-30-01976-g001.jpg

相似文献

1
Tuning the Energy Levels of Adamantane by Boron Substitution.
Molecules. 2025 Apr 29;30(9):1976. doi: 10.3390/molecules30091976.
5
Synthesis and Evaluation of Nifurtimox-Adamantane Adducts with Trypanocidal Activity.
ChemMedChem. 2019 Jul 3;14(13):1227-1231. doi: 10.1002/cmdc.201900165. Epub 2019 May 27.
7
Through-space charge transfer and emission color tuning of di-o-carborane substituted benzene.
Dalton Trans. 2014 Apr 7;43(13):4978-85. doi: 10.1039/c3dt52465e.
9
Novel adamantane-based hole transport materials for perovskite solar cells: a computational approach.
Phys Chem Chem Phys. 2019 Feb 13;21(7):3857-3867. doi: 10.1039/c8cp07515h.

本文引用的文献

1
Synthesis of Boron-Doped Carbon Nanomaterial.
Materials (Basel). 2023 Feb 28;16(5):1986. doi: 10.3390/ma16051986.
2
Describing Chemical Reactivity with Frontier Molecular Orbitalets.
JACS Au. 2022 Jun 16;2(6):1383-1394. doi: 10.1021/jacsau.2c00085. eCollection 2022 Jun 27.
3
Direct radical functionalization methods to access substituted adamantanes and diamondoids.
Org Biomol Chem. 2021 Dec 22;20(1):10-36. doi: 10.1039/d1ob01916c.
4
Bond order effects on the optoelectronic properties of oxygen/sulfur functionalized adamantanes.
J Mol Graph Model. 2021 Jun;105:107869. doi: 10.1016/j.jmgm.2021.107869. Epub 2021 Feb 22.
5
Optical Properties of Single- and Double-Functionalized Small Diamondoids.
J Phys Chem A. 2018 Apr 12;122(14):3583-3593. doi: 10.1021/acs.jpca.7b12519. Epub 2018 Mar 30.
6
Electronic and Optical Properties of Methylated Adamantanes.
J Am Chem Soc. 2017 Aug 16;139(32):11132-11137. doi: 10.1021/jacs.7b05150. Epub 2017 Aug 7.
7
Tuning the HOMO-LUMO Energy Gap of Small Diamondoids Using Inverse Molecular Design.
J Chem Theory Comput. 2017 Mar 14;13(3):1351-1365. doi: 10.1021/acs.jctc.6b01074. Epub 2017 Feb 28.
8
Adamantane in Drug Delivery Systems and Surface Recognition.
Molecules. 2017 Feb 16;22(2):297. doi: 10.3390/molecules22020297.
9
Towards double-functionalized small diamondoids: selective electronic band-gap tuning.
Nanotechnology. 2015 Jan 21;26(3):035701. doi: 10.1088/0957-4484/26/3/035701. Epub 2014 Dec 30.
10
Stable boron nitride diamondoids as nanoscale materials.
Nanotechnology. 2014 Sep 12;25(36):365601. doi: 10.1088/0957-4484/25/36/365601. Epub 2014 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验