Yusuf Aminu H, Golovko Vladimir B, Masters Sarah L
School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
Molecules. 2025 Apr 29;30(9):1976. doi: 10.3390/molecules30091976.
Adamantane is known to have two different carbon environments, the C1-type (or bridgehead) and C2-type (or methylene bridge), serving as a foundation to explore the effects of boron substitution at these sites. Using DFT with B3LYP/6-31G(d), the structural, electronic, and optical properties of 37 boron-substituted isomers were investigated. The adamantane structure has rigid symmetry with an average C-C of 153.7 pm, which progressively transforms to and symmetry in heavily substituted isomers. Analysis of the neutral and ionic species reveals a critical transition from electron-donating to electron-accepting behaviour at tri-boron substitution, confirmed by both DFT and coupled cluster calculations (CCSD(T)/CC-pVDZ). C1 substitution narrows the HOMO-LUMO gap significantly, achieving a 56% reduction compared to 44.5% for C2 substitution in tetra-bora derivatives compared to adamantane. Optical properties [CAM-B3LYP/6-311G(d,p)] show systematic red shifting with increasing boron substitution, with absorption maxima moving from 146 nm in pristine adamantane to 423 nm (C1) and 277 nm (C2) in heavily boron-substituted derivatives (tetra-bora-adamantane). While C1 substitution leads to symmetry-forbidden transitions, C2 substitution maintains allowed transitions, offering more consistent optical behaviour. These findings provide important insight for the design of adamantane-based materials with tailored electronic and optical properties.
金刚烷已知有两种不同的碳环境,即C1型(或桥头)和C2型(或亚甲基桥),这为探索这些位点硼取代的影响奠定了基础。使用B3LYP/6 - 31G(d)的密度泛函理论(DFT),研究了37种硼取代异构体的结构、电子和光学性质。金刚烷结构具有刚性对称性,平均C - C键长为153.7皮米,在高度取代的异构体中逐渐转变为[此处原文缺失相关对称性描述]对称性。对中性和离子物种的分析表明,在三硼取代时从供电子行为到吸电子行为存在关键转变,这由DFT和耦合簇计算(CCSD(T)/CC - pVDZ)所证实。与金刚烷相比,在四硼衍生物中,C1取代显著缩小了最高已占分子轨道(HOMO) - 最低未占分子轨道(LUMO)能隙,降低了56%,而C2取代降低了44.5%。光学性质[CAM - B3LYP/6 - 311G(d,p)]显示随着硼取代增加有系统的红移,吸收最大值从原始金刚烷中的146纳米移动到高度硼取代衍生物(四硼金刚烷)中的423纳米(C1)和277纳米(C2)。虽然C1取代导致对称性禁阻跃迁,但C2取代保持允许跃迁,呈现出更一致的光学行为。这些发现为设计具有定制电子和光学性质的金刚烷基材料提供了重要见解。