Taouali Walid, Alimi Kamel
Research Laboratory of Asymmetric Synthesis and Molecular Engineering of Materials for Organic Electronic (LR18ES19), Department of Physics, Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia.
J Fluoresc. 2025 Mar 27. doi: 10.1007/s10895-025-04268-0.
Heavy atom substitution is a promising strategy for enhancing organic solar cells (OSCs) performance. This study explores the optoelectronic impact of such substitution on the recently synthesized non-fullerene acceptor CB16 (C). Specifically, two derivatives, C and C, were designed, replacing sulfur (S) with two distinct heavy heteroatoms selenium (Se) and tellurium (Te), respectively. Their photophysical and optoelectronic characteristics have been investigated through density functional theory (DFT) and time-dependent DFT simulations using the HSEH1PBE/6-311G(d,p) method. The computational investigations covered a wide range of properties, including electronic structure and bonding characteristics, electronic density and stability, reorganization energy, absorption properties and non-linear optical response. Interestingly, in both C and C, the energy difference between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) was significantly reduced, decreasing from1.71 eV in C to 1.64 eV in C and 1.54 eV in C. Similarly, the simulation results showed several enhanced properties in both derivatives compared to C, with C demonstrating markedly greater improvements such as enhanced dipole moment (2.35D), red-shifted absorption indicating enhanced light-harvesting potential, and extended excited state lifetime (4.94 ns) owing it to its low hole reorganization energies (λh ~ 0.173 eV). Analysis of molecular orbitals, transition density matrix, and bonding characteristics suggests that Se and Te substitutions facilitate improved intramolecular charge transfer and enhanced non-linear optical response and provide a higher photovoltaic potential. These findings highlight the effectiveness of heavy atom substitution in tuning optoelectronic properties and the potential of targeted heavy tellurium atom substitution for the development of next-generation high-performance organic solar cells.
重原子取代是提高有机太阳能电池(OSCs)性能的一种很有前景的策略。本研究探讨了这种取代对最近合成的非富勒烯受体CB16(C)的光电影响。具体而言,设计了两种衍生物C和C,分别用两种不同的重杂原子硒(Se)和碲(Te)取代硫(S)。通过使用HSEH1PBE/6-311G(d,p)方法的密度泛函理论(DFT)和含时DFT模拟,研究了它们的光物理和光电特性。计算研究涵盖了广泛的性质,包括电子结构和键合特性、电子密度和稳定性、重组能、吸收特性和非线性光学响应。有趣的是,在C和C中,最高占据分子轨道和最低未占据分子轨道(HOMO-LUMO)之间的能量差都显著减小,从C中的1.71 eV降至C中的1.64 eV和C中的1.54 eV。同样,模拟结果表明,与C相比,这两种衍生物的几种性质都有所增强,其中C表现出更显著的改善,如增强的偶极矩(2.35D)、红移吸收表明光捕获潜力增强,以及由于其低空穴重组能(λh ~ 0.173 eV)而延长的激发态寿命(4.94 ns)。对分子轨道、跃迁密度矩阵和键合特性的分析表明,Se和Te取代有助于改善分子内电荷转移和增强非线性光学响应,并提供更高的光伏潜力。这些发现突出了重原子取代在调节光电性质方面的有效性,以及靶向重碲原子取代在开发下一代高性能有机太阳能电池方面的潜力。