Suppr超能文献

涂覆在碳布上的钠插层氧化钒用于高性能水系锌离子电池的电极材料

Sodium-Intercalated Vanadium Oxide Coated on Carbon Cloth for Electrode Materials in High-Performance Aqueous Zinc-Ion Batteries.

作者信息

Chen Chen, Hou Baoxuan, Cheng Ting, Wu Fei, Hu Yulin, Dai Youzhi, Zhang Xiao, Tian Yuan, Zhao Xin, Wang Lei

机构信息

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

School of Environmental Ecology, The City Vocational College of Jiangsu, Nanjing 210017, China.

出版信息

Molecules. 2025 May 7;30(9):2074. doi: 10.3390/molecules30092074.

Abstract

In this work, novel sodium-intercalated vanadium oxide nanowire electrode materials (NaXV@CC) were successfully designed as cathode materials for Aqueous Zinc-Ion Batteries (AZIBs) through a two-step electrochemical process. The optimized electrode material, Na30V@CC, exhibited superior capacity, excellent rate capability, and outstanding stability. The intercalation of sodium ions into the nanowire lattice induced a significant transformation in the overall nanostructure, leading to altered nanowire morphology. This unique structural design provided abundant active sites and efficient ion transport pathways, thereby enhancing the overall electrochemical performance. The charging and discharging capacities were 343.3 and 330.4 mAh·g at 0.2 A·g, respectively, and the capacity was maintained at 90 mAh·g at 8 A·g. The battery demonstrated exceptional capacity retention over 3000 cycles at 5 A·g, highlighting its long-term electrochemical stability. Moreover, the overall battery reaction was governed by a combination of diffusion and surface processes. The Na30V@CC battery system demonstrated reduced reaction impedance and improved zinc ion diffusion rates. This study offers valuable insights into enhancing the electrochemical performance of vanadium-based cathodes in AZIBs.

摘要

在这项工作中,通过两步电化学过程成功设计了新型的钠离子插层氧化钒纳米线电极材料(NaXV@CC)作为水系锌离子电池(AZIBs)的正极材料。优化后的电极材料Na30V@CC表现出优异的容量、出色的倍率性能和卓越的稳定性。钠离子插入纳米线晶格中导致整体纳米结构发生显著转变,从而使纳米线形态发生改变。这种独特的结构设计提供了丰富的活性位点和高效的离子传输途径,进而提升了整体电化学性能。在0.2 A·g时,充电和放电容量分别为343.3和330.4 mAh·g,在8 A·g时容量保持在90 mAh·g。该电池在5 A·g下经过3000次循环仍表现出优异的容量保持率,突出了其长期的电化学稳定性。此外,整体电池反应受扩散和表面过程的共同控制。Na30V@CC电池系统表现出降低的反应阻抗和提高的锌离子扩散速率。这项研究为提高AZIBs中钒基正极的电化学性能提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716b/12073733/94aa9a8dec16/molecules-30-02074-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验