Suppr超能文献

通过脉冲激光接枝制备无表面活性剂的混合金属纳米催化剂-碳纤维纸复合材料

Fabrication of Surfactant-Free Mixed-Metal Nanocatalyst-Carbon Fiber Paper Composites via Pulsed Laser Grafting.

作者信息

Wilsey Madeleine K, Taseska Teona, Schultz Lydia R, Perez Elena, Müller Astrid M

机构信息

Materials Science Program, University of Rochester, Rochester, New York 14627, United States.

Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2025 Apr 24;129(18):8730-8746. doi: 10.1021/acs.jpcc.5c00641. eCollection 2025 May 8.

Abstract

We present a novel methodology for fabricating surfactant-free mixed-metal nanocatalyst-carbon fiber paper composites, demonstrating significant improvements in impedance, electrocatalytic activity, and long-term stability over laser synthesized drop cast analogues on carbon fiber paper or highly ordered pyrolytic graphite. Our innovative pulsed laser grafting technique is a versatile, one-step aqueous process that integrates nanoparticle generation with surface attachment on macroscopic solid supports, such as sheets, rather than being limited to powders, particulate supports, or organic solvents as in prior methods. It effectively addresses longstanding challenges with nanoparticle adhesion and electrical contact between nanoparticles and macroscopic electrodes, and it alleviates environmental concerns associated with organic solvents. Laser grafting eliminates laborious synthesis, separation, purification, and postsynthesis attachment steps, thus significantly reducing composite preparation time. We fabricated [NiFe]-(OH)-hydrophilic carbon fiber paper composites using aqueous nickel-iron nitrate solution. Low-fluence 532 nm nanosecond laser pulses minimized surface damage and facilitated effective metal ion excitation for nanoparticle assembly. SEM, EDX and XPS data revealed surface [NiFe]-(OH) without carbon encapsulation and prominent Ni-C interactions. The pulsed laser grafted composites showed enhanced electrocatalytic performance for alkaline water oxidation and decreased material charge transfer resistance, compared to drop cast analogues, leading to improved electrical conductivity and mass activity. Additionally, they demonstrated exceptional long-term stability, overcoming common adhesion issues in conventional nanoparticle-support systems, marking a significant advancement in the manufacturing of multimetallic nanoparticle-support composites, with promising implications for electrochemistry and electrocatalysis technologies.

摘要

我们提出了一种制备无表面活性剂的混合金属纳米催化剂-碳纤维纸复合材料的新方法,与在碳纤维纸或高度有序热解石墨上通过激光合成滴铸法制备的类似物相比,该复合材料在阻抗、电催化活性和长期稳定性方面有显著提高。我们创新的脉冲激光接枝技术是一种通用的一步水相工艺,它将纳米颗粒的生成与在宏观固体载体(如薄片)上的表面附着相结合,而不像以前的方法那样局限于粉末、颗粒载体或有机溶剂。它有效地解决了纳米颗粒附着力以及纳米颗粒与宏观电极之间电接触方面长期存在的挑战,并减轻了与有机溶剂相关的环境问题。激光接枝消除了繁琐的合成、分离、纯化和合成后附着步骤,从而显著缩短了复合材料的制备时间。我们使用硝酸镍铁水溶液制备了[NiFe]-(OH)-亲水性碳纤维纸复合材料。低能量密度的532 nm纳秒激光脉冲使表面损伤最小化,并促进了用于纳米颗粒组装的有效金属离子激发。扫描电子显微镜(SEM)、能量散射X射线光谱(EDX)和X射线光电子能谱(XPS)数据显示,表面存在无碳包覆的[NiFe]-(OH)以及显著的Ni-C相互作用。与滴铸类似物相比,脉冲激光接枝的复合材料对碱性水氧化表现出增强的电催化性能,且材料电荷转移电阻降低,从而提高了电导率和质量活性。此外,它们还表现出出色的长期稳定性,克服了传统纳米颗粒-载体系统中常见的附着力问题,这标志着多金属纳米颗粒-载体复合材料制造方面的重大进展,对电化学和电催化技术具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2047/12067443/3391f10db5f9/jp5c00641_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验