Dünnwald Max, Krohn Friedrich, Sciarra Alessandro, Sarkar Mousumi, Schneider Anja, Fliessbach Klaus, Kimmich Okka, Jessen Frank, Rostamzadeh Ayda, Glanz Wenzel, Incesoy Enise I, Teipel Stefan, Kilimann Ingo, Goerss Doreen, Spottke Annika, Brustkern Johanna, Heneka Michael T, Brosseron Frederic, Lüsebrink Falk, Hämmerer Dorothea, Düzel Emrah, Tönnies Klaus, Oeltze-Jafra Steffen, Betts Matthew J
Department of Neurology Otto von Guericke University Magdeburg (OvGU) Magdeburg Germany.
Faculty of Computer Science OvGU Magdeburg Germany.
Alzheimers Dement (Amst). 2025 May 12;17(2):e70118. doi: 10.1002/dad2.70118. eCollection 2025 Apr-Jun.
The locus coeruleus (LC) is linked to the development and pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD). Magnetic resonance imaging-based LC features have shown potential to assess LC integrity in vivo.
We present a deep learning-based LC segmentation and feature extraction method called Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) and apply it to healthy aging and AD dementia datasets. Agreement to expert raters and previously published LC atlases were assessed. We aimed to reproduce previously reported differences in LC integrity in aging and AD dementia and correlate extracted features to cerebrospinal fluid (CSF) biomarkers of AD pathology.
ELSI-Net demonstrated high agreement to expert raters and published atlases. Previously reported group differences in LC integrity were detected and correlations to CSF biomarkers were found.
Although we found excellent performance, further evaluations on more diverse datasets from clinical cohorts are required for a conclusive assessment of ELSI-Net's general applicability.
We provide a thorough evaluation of a fully automatic locus coeruleus (LC) segmentation method termed Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) in aging and Alzheimer's disease (AD) dementia.ELSI-Net outperforms previous work and shows high agreement with manual ratings and previously published LC atlases.ELSI-Net replicates previously shown LC group differences in aging and AD.ELSI-Net's LC mask volume correlates with cerebrospinal fluid biomarkers of AD pathology.
蓝斑(LC)与阿尔茨海默病(AD)等神经退行性疾病的发生发展及病理生理学相关。基于磁共振成像的蓝斑特征已显示出在体内评估蓝斑完整性的潜力。
我们提出了一种基于深度学习的蓝斑分割和特征提取方法,称为基于集成的蓝斑分割网络(ELSI-Net),并将其应用于健康老龄化和AD痴呆数据集。评估了与专家评分者以及先前发表的蓝斑图谱的一致性。我们旨在重现先前报道的衰老和AD痴呆中蓝斑完整性的差异,并将提取的特征与AD病理学的脑脊液(CSF)生物标志物相关联。
ELSI-Net与专家评分者和已发表的图谱显示出高度一致性。检测到先前报道的蓝斑完整性的组间差异,并发现了与CSF生物标志物的相关性。
尽管我们发现该方法性能优异,但要对ELSI-Net的普遍适用性进行最终评估,还需要对来自临床队列的更多样化数据集进行进一步评估。
我们对一种名为基于集成的蓝斑分割网络(ELSI-Net)的全自动蓝斑(LC)分割方法在衰老和阿尔茨海默病(AD)痴呆中进行了全面评估。ELSI-Net优于先前的工作,并与人工评分和先前发表的蓝斑图谱显示出高度一致性。ELSI-Net重现了先前在衰老和AD中显示的蓝斑组间差异。ELSI-Net的蓝斑掩码体积与AD病理学的脑脊液生物标志物相关。