Esposito Rosario, Mensitieri Giuseppe, Zhou You-Liang, Lu Zhong-Yuan, Zhao Ying, Kawakatsu Toshihiro, Milano Giuseppe
Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Napoli, Italy.
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
J Comput Chem. 2025 May 15;46(13):e70126. doi: 10.1002/jcc.70126.
A parallelization strategy for hybrid particle-field molecular dynamics (hPF-MD) simulations on multi-node multi-GPU architectures is proposed. Two design principles have been followed to achieve a massively parallel version of the OCCAM code for distributed GPU computing: performing all the computations only on GPUs, minimizing data exchange between CPU and GPUs, and among GPUs. The hPF-MD scheme is particularly suitable to develop a GPU-resident and low data exchange code. Comparison of performances obtained using the previous multi-CPU code with the proposed multi-node multi-GPU version are reported. Several non-trivial issues to enable applications for systems of considerable sizes, including large input files handling and memory occupation, have been addressed. Large-scale benchmarks of hPF-MD simulations for system sizes up to 10 billion particles are presented. Performances obtained using a moderate quantity of computational resources highlight the feasibility of hPF-MD simulations in systematic studies of large-scale multibillion particle systems. This opens the possibility to perform systematic/routine studies and to reveal new molecular insights for problems on scales previously inaccessible to molecular simulations.
提出了一种在多节点多GPU架构上进行混合粒子-场分子动力学(hPF-MD)模拟的并行化策略。遵循了两条设计原则来实现用于分布式GPU计算的OCCAM代码的大规模并行版本:仅在GPU上执行所有计算,尽量减少CPU与GPU之间以及GPU之间的数据交换。hPF-MD方案特别适合开发驻留在GPU且数据交换量低的代码。报告了使用先前的多CPU代码与所提出的多节点多GPU版本所获得的性能比较。已经解决了几个使相当大规模的系统能够应用的重要问题,包括大输入文件处理和内存占用。给出了系统规模高达100亿个粒子的hPF-MD模拟的大规模基准测试。使用适量计算资源获得的性能突出了hPF-MD模拟在大规模数十亿粒子系统的系统研究中的可行性。这为进行系统/常规研究以及揭示分子模拟以前无法触及的尺度上的问题的新分子见解开辟了可能性。