Yang Yaqi, Zhang Zhewei, Li Jiejun, Zhao Zijian, Xie Yixi, Zhao Pengcheng, Fei Junjie
College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People's Republic of China.
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
Mikrochim Acta. 2025 May 14;192(6):353. doi: 10.1007/s00604-025-07214-w.
The development of two-dimensional porous carbon nanosheets (mNPC) presents a promising solution to address the aggregation challenges of transition metal oxides in catalytic sensing applications. In this study, hierarchical porous carbon nanosheets were synthesized through a dual-template strategy employing octadecylamine and the block copolymer PEO-b-PS during pyrrole monomer polymerization under mild conditions, followed by controlled pyrolysis. Subsequent uniform dispersion of FeO nanoparticles on the carbon matrix yielded an advanced mNPC/FeO nanocomposite. Comprehensive characterization via field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed the successful formation of the hierarchical porous structure and homogeneous distribution of FeO. Electrochemical evaluation revealed that the mNPC/FeO modified glassy carbon electrode exhibited exceptional electrocatalytic performance for catechin detection, achieving an ultra-low detection limit of 0.36 nM (S/N = 3) with a broad linear response range from 0.1 nM to 1.1 μM under optimized conditions. The sensor demonstrated remarkable anti-interference in complex matrices. This work not only provides a novel strategy for food safety monitoring but also expands the application scope of conductive polymer-derived nanomaterials in electrochemical sensing platforms.
二维多孔碳纳米片(mNPC)的开发为解决过渡金属氧化物在催化传感应用中的聚集挑战提供了一个有前景的解决方案。在本研究中,通过在温和条件下吡咯单体聚合过程中采用十八胺和嵌段共聚物PEO-b-PS的双模板策略合成了分级多孔碳纳米片,随后进行可控热解。随后,FeO纳米颗粒在碳基质上均匀分散,得到了一种先进的mNPC/FeO纳米复合材料。通过场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼光谱和X射线光电子能谱(XPS)进行的综合表征证实了分级多孔结构的成功形成和FeO的均匀分布。电化学评估表明,mNPC/FeO修饰的玻碳电极对儿茶素检测表现出优异的电催化性能,在优化条件下实现了0.36 nM(S/N = 3)的超低检测限,线性响应范围从0.1 nM到1.1 μM。该传感器在复杂基质中表现出显著的抗干扰能力。这项工作不仅为食品安全监测提供了一种新策略,还扩展了导电聚合物衍生的纳米材料在电化学传感平台中的应用范围。