Suppr超能文献

研究适应高浓度二氧化碳和温度的花生对光的光合及叶绿素荧光响应。

Investigating photosynthetic and chlorophyll fluorescence responses to light in peanut acclimated to elevated CO and temperature.

作者信息

Adireddy Rajanna G, Anapalli Saseendran S, Delhom Christopher D, Puppala Naveen, Reddy Krishna N

机构信息

Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, 38776, USA.

ICAR-Indian Institute of Groundnut Research, Regional Research Station, Ananthapur, AP, 515001, India.

出版信息

Photosynth Res. 2025 May 14;163(3):29. doi: 10.1007/s11120-025-01151-8.

Abstract

In plants, the photo-inhibitory effects of incident lights on the light-harvesting complexes are balanced by photoprotective mechanisms to maintain photosynthesis. With increasing air CO concentrations and temperatures, the balance can tilt either way, with unpredictable consequences for biomass assimilated through photosynthesis. As such, it is critical to assess the photosynthetic responses of crop plants growing in future climates to light for developing strategies for sustaining food production. This study evaluated changes in photosynthetic and chlorophyll fluorescence responses to light intensities in peanuts (Arachis hypogaea L) acclimated to projected future climates by Global Circulation Models (GCM). The plants were grown in plant growth chambers under three climate conditions (CC): (1) ambient air [CO] and ambient temperature [Ta] (CC1), (2) [CO] at 570 ppm and Ta + 3⁰ C (CC2 climate possible in 2050), and (3) [CO] at 780 ppm and Ta + 5⁰C (CC3, climate possible in 2080). Plants growing under all three climates enhanced photosynthetic rates (A) with light intensities from 0 to 1500 µ mol m s but decreased afterward. Compared to CC1, plants growing under CC2 and CC3 reduced electron transport rates (ETR), A, and transpiration (Tr) between 48 and 190%, 52 and 65%, and 22 and 24%, respectively. Concurrently, the quantum efficiency of photosystem II (ФPS2) was reduced by 88-200% and photochemical quenching (qP) by 55-170%. Non-photochemical quenching increased with increasing light levels from 200 to 1500 µmol m⁻² s⁻¹ and decreased afterward. Results indicated the possibility of reduced photosynthetic efficiencies under CC2 and CC3, which would significantly reduce biomass production in future climates. Gaining insight into these impacts can help understand plant's ability to adapt and assist in developing adaptive strategies for sustainable peanut farming.

摘要

在植物中,入射光对光捕获复合体的光抑制作用通过光保护机制来平衡,以维持光合作用。随着空气中二氧化碳浓度和温度的升高,这种平衡可能向任何一个方向倾斜,对通过光合作用同化的生物量产生不可预测的影响。因此,评估未来气候条件下生长的作物对光的光合响应对于制定维持粮食生产的策略至关重要。本研究评估了花生(Arachis hypogaea L)在全球环流模型(GCM)预测的未来气候条件下适应后,其光合和叶绿素荧光对光强的响应变化。这些植物在植物生长室中于三种气候条件(CC)下生长:(1)环境空气二氧化碳浓度[CO₂]和环境温度[Ta](CC1),(2)二氧化碳浓度为570 ppm且温度为Ta + 3℃(2050年可能出现的CC2气候),以及(3)二氧化碳浓度为780 ppm且温度为Ta + 5℃(2080年可能出现的CC3气候)。在所有三种气候条件下生长的植物,随着光强从0增加到1500 μmol m⁻² s⁻¹,光合速率(A)增强,但随后降低。与CC1相比,在CC2和CC3条件下生长的植物,电子传递速率(ETR)、光合速率(A)和蒸腾速率(Tr)分别降低了48%至190%、52%至65%和22%至24%。同时,光系统II的量子效率(ФPS2)降低了88%至200%,光化学猝灭(qP)降低了55%至170%。非光化学猝灭随着光强从200增加到1500 μmol m⁻² s⁻¹而增加,随后降低。结果表明,在CC2和CC3条件下光合效率可能降低,这将显著减少未来气候条件下的生物量生产。深入了解这些影响有助于理解植物的适应能力,并有助于制定可持续花生种植的适应性策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验