Suppr超能文献

Swin-HSSAM:一种基于Swin变压器的生咖啡豆分级方法。

Swin-HSSAM: A green coffee bean grading method by Swin transformer.

作者信息

Jiao Yujie, Zhao Yuqing, Jia Aoying, Wang Tianyun, Li Jiashun, Xiang Kaiming, Deng Hangyu, He Maochang, Jiang Rui, Zhang Yue

机构信息

Faculty of Mechanical and Electrical Engineering, Yunnan Agriculture University, Kunming, China.

Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming, China.

出版信息

PLoS One. 2025 May 14;20(5):e0322198. doi: 10.1371/journal.pone.0322198. eCollection 2025.

Abstract

A novel shifted window (Swin) Transformer coffee bean grading model called Swin-HSSAM has been proposed to address the challenges of accurately classifying green coffee beans and low identification accuracy. This model integrated the Swin Transformer as the backbone network; fused features from the second, third, and fourth stages using the high-level screening-feature pyramid networks module; and incorporated the selective attention module (SAM) for discriminative power enhancement to enhance the feature outputs before classification. Fusion Loss was employed as the loss function. Experimental results on a proprietary coffee bean dataset demonstrate that the Swin-HSSAM model achieved an average grading accuracy of 96.34% for the three grading as well as the nine defect subdivision levels, outperforming the AlexNet, VGG16, ResNet50, MobileNet-v2, Vision Transformer (ViT), and CrossViT models by 3.86%, 2.56%, 0.44%, 4.05%, 5.36%, and 5.40% percentage points, respectively. Evaluations on a public coffee bean dataset revealed that, compared with the aforementioned models, the Swin-HSSAM model improved the average grading accuracy by 1.01%, 0.13%, 4.75%, 0.85%, 0.73%, and 0.27% percentage points, respectively. These results indicate that the Swin-HSSAM model not only achieved high grading accuracy but also exhibited broad applicability, providing a novel solution for the automated grading and identification of green coffee beans.

摘要

为应对生咖啡豆准确分类的挑战和低识别准确率问题,提出了一种名为Swin-HSSAM的新型移位窗口(Swin)Transformer咖啡豆分级模型。该模型将Swin Transformer集成作为骨干网络;使用高级筛选特征金字塔网络模块融合第二、第三和第四阶段的特征;并纳入选择性注意力模块(SAM)以增强判别力,从而在分类前增强特征输出。采用融合损失作为损失函数。在一个专有的咖啡豆数据集上的实验结果表明,Swin-HSSAM模型在三个分级以及九个缺陷细分级别上实现了96.34%的平均分级准确率,分别比AlexNet、VGG16、ResNet50、MobileNet-v2、视觉Transformer(ViT)和CrossViT模型高出3.86%、2.56%、0.44%、4.05%、5.36%和5.40个百分点。在一个公共咖啡豆数据集上的评估显示,与上述模型相比,Swin-HSSAM模型的平均分级准确率分别提高了1.01%、0.13%、4.75%、0.85%、0.73%和0.27个百分点。这些结果表明,Swin-HSSAM模型不仅实现了高分级准确率,而且具有广泛的适用性,为生咖啡豆的自动分级和识别提供了一种新的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d2c/12077702/2c3d794536b4/pone.0322198.g001.jpg

相似文献

1
Swin-HSSAM: A green coffee bean grading method by Swin transformer.
PLoS One. 2025 May 14;20(5):e0322198. doi: 10.1371/journal.pone.0322198. eCollection 2025.
2
Comparative analysis of YOLO models for green coffee bean detection and defect classification.
Sci Rep. 2024 Nov 22;14(1):28946. doi: 10.1038/s41598-024-78598-7.
3
SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images.
Med Phys. 2024 Mar;51(3):2096-2107. doi: 10.1002/mp.16703. Epub 2023 Sep 30.
4
Enhanced Pneumonia Detection in Chest X-Rays Using Hybrid Convolutional and Vision Transformer Networks.
Curr Med Imaging. 2025;21:e15734056326685. doi: 10.2174/0115734056326685250101113959.
5
9
S-Swin Transformer: simplified Swin Transformer model for offline handwritten Chinese character recognition.
PeerJ Comput Sci. 2022 Sep 20;8:e1093. doi: 10.7717/peerj-cs.1093. eCollection 2022.
10

本文引用的文献

1
Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases.
Comput Biol Med. 2024 Mar;170:107917. doi: 10.1016/j.compbiomed.2024.107917. Epub 2024 Jan 6.
2
Multimodal Learning With Transformers: A Survey.
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):12113-12132. doi: 10.1109/TPAMI.2023.3275156. Epub 2023 Sep 5.
3
ECG Heartbeat Classification Based on an Improved ResNet-18 Model.
Comput Math Methods Med. 2021 Apr 30;2021:6649970. doi: 10.1155/2021/6649970. eCollection 2021.
4
Tomato Fruit Detection and Counting in Greenhouses Using Deep Learning.
Front Plant Sci. 2020 Nov 19;11:571299. doi: 10.3389/fpls.2020.571299. eCollection 2020.
5
Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS.
Food Res Int. 2018 Jun;108:628-640. doi: 10.1016/j.foodres.2018.03.077. Epub 2018 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验