Suppr超能文献

使用连续相建模框架,基于CT扫描重建图像对呼吸道中颗粒动力学进行患者特异性模拟。

Patient-specific simulation of particle dynamics in the respiratory airways from CT-scan-reconstructed images using a continuous phase modelling framework.

作者信息

Samanta Subho, Ehsan Ivan, Hirani Harish, Chakraborty Suman

机构信息

Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India.

Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India.

出版信息

Comput Biol Med. 2025 Jun;192(Pt B):110354. doi: 10.1016/j.compbiomed.2025.110354. Epub 2025 May 13.

Abstract

Understanding particle transport and deposition in human airway bifurcations is vital for respiratory health and inhaled therapies. CT scan images of respiratory pathways provide detailed anatomical models up to 6-12 airway generations, which are useful for airflow modelling in larger airways. However, imperfections in CT imaging, particularly at branching points, complicate the simulation of airflow and particle dynamics in smaller airways. To address these challenges, we present a computationally efficient albeit patient-specific simulation framework for the transport of micron-sized particles in respiratory pathways. This framework employs a Eulerian modelling approach that incorporates CT-scan derived patient-specific geometry along with the underlying vascular structures. To address the challenges due to limited resolution and minimize entrance effects in airflow simulations, flow extensions are added at the inlet regions, preventing distortion of airflow patterns in the lung. Particles are modelled as a continuous phase by solving equations for their concentration distribution, which are coupled with the fluid flow equations to simulate particle dynamics efficiently. The results show that particle size, flow rate, and airway structure significantly influence deposition patterns: small particles (1 μm) penetrate deeply with minimal deposition, medium-sized particles (10 μm) exhibit a balance between inertial impaction and gravitational settling, and large particles (30 μm) predominantly deposit in the upper airways. Compared to the traditional particle-tracking framework, our approach reduces computational costs while effectively capturing the key effects of the flow field on particle transport in realistic airway bifurcations. This advancement enables faster and more scalable personalized simulations for respiratory health assessments, offering a more efficient alternative to resource-intensive methods, and is crucial for applications like improving aerosol drug delivery, assessing exposure to airborne pollutants, and designing preventive health strategies.

摘要

了解人体气道分支中的颗粒传输和沉积对于呼吸健康和吸入疗法至关重要。呼吸道的CT扫描图像提供了多达6 - 12个气道代的详细解剖模型,这对于较大气道中的气流建模很有用。然而,CT成像的不完美之处,尤其是在分支点处,使较小气道中气流和颗粒动力学的模拟变得复杂。为了应对这些挑战,我们提出了一个计算效率高且针对患者的模拟框架,用于微米级颗粒在呼吸道中的传输。该框架采用欧拉建模方法,结合了从CT扫描得出的患者特定几何形状以及潜在的血管结构。为了应对分辨率有限带来的挑战并最小化气流模拟中的入口效应,在入口区域添加了流动扩展,防止肺部气流模式的扭曲。通过求解颗粒浓度分布方程将颗粒建模为连续相,这些方程与流体流动方程耦合以有效地模拟颗粒动力学。结果表明,颗粒大小、流速和气道结构显著影响沉积模式:小颗粒(1μm)深入穿透且沉积最少,中等大小颗粒(10μm)在惯性撞击和重力沉降之间呈现平衡,而大颗粒(30μm)主要沉积在上气道。与传统的颗粒追踪框架相比,我们的方法降低了计算成本,同时有效地捕捉了流场对实际气道分支中颗粒传输的关键影响。这一进展使得能够更快、更可扩展地进行呼吸健康评估的个性化模拟,为资源密集型方法提供了更有效的替代方案,对于改善气溶胶药物递送、评估空气传播污染物暴露以及设计预防性健康策略等应用至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验