Suppr超能文献

吸入式气溶胶在人体气道中的分布:3D 打印模型引导的闪烁摄影研究。

Inhaled Aerosol Distribution in Human Airways: A Scintigraphy-Guided Study in a 3D Printed Model.

机构信息

1 Respiratory Division, University Hospital UZ Brussel , Vrije Universiteit Brussel, Brussels, Belgium .

2 Research Group Fluid Mechanics and Thermodynamics, Department of Mechanical Engineering, Vrije Universiteit Brussel , Brussels, Belgium .

出版信息

J Aerosol Med Pulm Drug Deliv. 2016 Dec;29(6):525-533. doi: 10.1089/jamp.2016.1291. Epub 2016 Jun 23.

Abstract

BACKGROUND

While it is generally accepted that inertial impaction will lead to particle loss as aerosol is being carried into the pulmonary airways, most predictive aerosol deposition models adopt the hypothesis that the inhaled particles that remain airborne will distribute according to the gas flow distribution between airways downstream.

METHODS

Using a 3D printed cast of human airways, we quantified particle deposition and distribution and visualized their inhaled trajectory in the human lung. The human airway cast was exposed to 6 μm monodisperse, radiolabeled aerosol particles at distinct inhaled flow rates and imaged by scintigraphy in two perpendicular planes. In addition, we also imaged the distribution of aerosol beyond the airways into the five lung lobes. The experimental aerosol deposition patterns could be mimicked by computational fluid dynamic (CFD) simulation in the same 3D airway geometry.

RESULTS

It was shown that for particles with a diameter of 6 μm inhaled at flows up to 60 L/min, the aerosol distribution over both lungs and the individual five lung lobes roughly followed the corresponding distributions of gas flow. While aerosol deposition was greater in the main bronchi of the left versus right lung, distribution of deposited and suspended particles toward the right lung exceeded that of the left lung. The CFD simulations also predict that for both 3 and 6 μm particles, aerosol distribution between lung units subtending from airways in generation 5 did not match gas distribution between these units and that this effect was driven by inertial impaction.

CONCLUSIONS

We showed combined imaging experiments and CFD simulations to systematically study aerosol deposition patterns in human airways down to generation 5, where particle deposition could be spatially linked to the airway geometry. As particles are negotiating an increasing number of airways in subsequent branching generations, CFD predicts marked deviations of aerosol distribution with respect to ventilation distribution, even in the normal human lung.

摘要

背景

虽然人们普遍认为,当气溶胶被带入肺部气道时,惯性撞击会导致颗粒损失,但大多数预测性气溶胶沉积模型都采用这样的假设,即仍滞留在空气中的吸入颗粒将根据下游气道中的气流分布进行分布。

方法

我们使用人体气道的 3D 打印模型,定量测量了颗粒沉积和分布情况,并可视化了它们在人体肺部中的吸入轨迹。将人体气道模型暴露于不同吸入流速的 6μm 单分散放射性标记气溶胶颗粒中,并通过闪烁照相术在两个垂直平面上进行成像。此外,我们还对气道以外的气溶胶分布到五个肺叶进行了成像。在相同的 3D 气道几何形状中,通过计算流体动力学(CFD)模拟可以模拟实验气溶胶沉积模式。

结果

结果表明,对于直径为 6μm 的颗粒,在流速高达 60L/min 的情况下吸入,双侧肺和五个肺叶的气溶胶分布大致遵循相应的气流分布。虽然左肺主支气管的气溶胶沉积大于右肺,但沉积和悬浮颗粒向右侧肺的分布超过了左侧肺。CFD 模拟还预测,对于 3μm 和 6μm 颗粒,源自第 5 代气道的肺单位之间的气溶胶分布与这些单位之间的气流分布不匹配,这种效应是由惯性撞击引起的。

结论

我们通过联合成像实验和 CFD 模拟,系统地研究了人类气道中直至第 5 代的气溶胶沉积模式,其中颗粒沉积可以与气道几何形状空间相关联。由于颗粒在后续分支世代的气道中数量不断增加,即使在正常的人体肺部中,CFD 也预测气溶胶分布会明显偏离通气分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验