Voytsekhivskyy Oleksiy V, Hoffer Kenneth J, Cooke David L, Savini Giacomo
From the Kyiv Clinical Ophthalmology Hospital Eye Microsurgery Center (O.V.V.), Medical City, Kyiv, Ukraine.
Stein Eye Institute (K.J.H.), University of California, Los Angeles, California, USA; St. Mary's Eye Center (K.J.H.), Santa Monica, California, USA.
Am J Ophthalmol. 2025 Sep;277:45-56. doi: 10.1016/j.ajo.2025.05.004. Epub 2025 May 12.
To ascertain the refractive accuracy of 36 intraocular lens (IOL) power calculation formulas in unoperated eyes.
Retrospective accuracy and validity analysis.
Six hundred fifty-five patients undergoing phacoemulsification and implantation of the Tecnis 1 ZCB00 IOL (Johnson & Johnson Vision, Jacksonville, FL, USA).
Thirty-six formulas were evaluated including some that have never been tested, such as 3C 2.0, Eom, Hoffer H, Hoffer H-5, Fam adjusted methods, Norrby Regression Formula (Norrby RF), Norrby thin lens paraxial Ray-Tracing (Norrby RT), and VRF Cooke modified axial length (VRF CMAL). Optical biometry with the IOLMaster 700 (Carl Zeiss Meditec AG) was performed preoperatively. All descriptive statistics and the percentage of eyes within prediction error thresholds were evaluated with optimized lens constants.
The Formula Performance Index (FPI) and Formula Performance Index for subgroup (FPI sub) were used as the primary formula outcomes.
The highest FPI indexes were yielded by the VRF-G (0.590), Hoffer QST (0.575), VRF CMAL (0.574), Eom (0.572), EVO 2.0 (0.569), and Kane (0.568) formulas. The heteroscedastic test revealed statistically significant differences (P < .05) among formulas. The standard deviation (SD) of VRF-G (0.353 D), EVO 2.0 (0.362 D), Kane (0.366 D), Hoffer QST (0.371 D), and Eom (0.372 D) were lower than other methods (P < .05). The highest percentage of eyes with a PE within ±0.50 D was achieved by VRF-G (87.48%), Kane (86.41%), Hoffer QST (86.26%), and PEARL-DGS (86.26%).
Contemporary IOL power calculation formulas (Eom, EVO 2.0, Hoffer QST, VRF CMAL, and VRF-G) improved accuracy in all axial length ranges compared to traditional and updated methods. The CMAL method raised the accuracy of the VRF formula.
确定36种人工晶状体(IOL)屈光度计算公式在未手术眼中的屈光准确性。
回顾性准确性和有效性分析。
655例行超声乳化白内障吸除术并植入Tecnis 1 ZCB00人工晶状体(美国佛罗里达州杰克逊维尔强生视力公司)的患者。
评估了36种公式,包括一些从未经过测试的公式,如3C 2.0、Eom、Hoffer H、Hoffer H - 5、Fam调整法、Norrby回归公式(Norrby RF)、Norrby薄透镜近轴光线追踪法(Norrby RT)和VRF Cooke修正眼轴长度法(VRF CMAL)。术前使用IOLMaster 700(德国卡尔蔡司医疗技术公司)进行光学生物测量。使用优化的晶状体常数评估所有描述性统计数据以及预测误差阈值内的眼百分比。
公式性能指数(FPI)和亚组公式性能指数(FPI sub)用作主要公式结果。
VRF - G(0.590)、Hoffer QST(0.575)、VRF CMAL(0.574)、Eom(0.572)、EVO 2.0(0.569)和Kane(0.568)公式产生的FPI指数最高。异方差检验显示公式之间存在统计学显著差异(P < 0.05)。VRF - G(0.353 D)、EVO 2.0(0.362 D)、Kane(0.366 D)、Hoffer QST(0.371 D)和Eom(0.372 D)的标准差低于其他方法(P < 0.05)。VRF - G(87.48%)、Kane(86.41%)、Hoffer QST(86.26%)和PEARL - DGS(86.26%)在±0.50 D预测误差范围内的眼百分比最高。
与传统和更新方法相比,当代IOL屈光度计算公式(Eom、EVO 2.0、Hoffer QST、VRF CMAL和VRF - G)在所有眼轴长度范围内提高了准确性。CMAL方法提高了VRF公式的准确性。