Suppr超能文献

蛋白酶工程:方法、工具及新趋势

Protease engineering: Approaches, tools, and emerging trends.

作者信息

Martinusen Samantha G, Nelson Sage E, Slaton Ethan W, Long Lawton F, Pho Raymond, Ajayebi Seyednima, Denard Carl A

机构信息

Department of Chemical Engineering, University of Florida, Gainesville 32611, USA.

Department of Chemical Engineering, University of Florida, Gainesville 32611, USA; UF Health Cancer Center, University of Florida, Gainesville, 32611, USA.

出版信息

Biotechnol Adv. 2025 Sep;82:108602. doi: 10.1016/j.biotechadv.2025.108602. Epub 2025 May 12.

Abstract

Engineered proteases with bespoke substrate specificities and activities can empower broad and innovative applications in biomedicine, mass spectrometry-based proteomics, and chemical and synthetic biology. This review provides an authoritative, topical, and detailed description and discussion of the directed evolution and high-throughput strategies designed to engineer the substrate specificity of proteases in E. coli, yeast, phage, and cell-free systems. Second, we discuss emerging protease engineering strategies that complement directed evolution, including antibody-protease fusions that enable proximity catalysis, and protease substrate specificity switching driven by exogenous protein-protein interactions. Lastly, we discuss principles for engineering split and autoinhibited proteases, which are key signal-processing modules in protein circuits. Overall, readers will gain a valuable understanding of the latest advances in protease engineering, focusing on methodologies and strategies that enable precise control of protease activity and specificity.

摘要

具有定制底物特异性和活性的工程化蛋白酶可推动在生物医药、基于质谱的蛋白质组学以及化学与合成生物学等领域的广泛创新应用。本综述对旨在改造大肠杆菌、酵母、噬菌体和无细胞系统中蛋白酶底物特异性的定向进化和高通量策略进行了权威、适时且详细的描述与讨论。其次,我们探讨了补充定向进化的新兴蛋白酶工程策略,包括实现邻近催化的抗体 - 蛋白酶融合,以及由外源蛋白质 - 蛋白质相互作用驱动的蛋白酶底物特异性切换。最后,我们讨论了工程化分裂蛋白酶和自抑制蛋白酶的原理,它们是蛋白质回路中的关键信号处理模块。总体而言,读者将对蛋白酶工程的最新进展有宝贵的了解,重点关注能够精确控制蛋白酶活性和特异性的方法与策略。

相似文献

1
Protease engineering: Approaches, tools, and emerging trends.
Biotechnol Adv. 2025 Sep;82:108602. doi: 10.1016/j.biotechadv.2025.108602. Epub 2025 May 12.
2
Data-driven protease engineering by DNA-recording and epistasis-aware machine learning.
Nat Commun. 2025 Jul 1;16(1):5466. doi: 10.1038/s41467-025-60622-7.
3
PERRC: Protease Engineering with Reactant Residence Time Control.
ACS Synth Biol. 2025 Jun 20;14(6):2241-2253. doi: 10.1021/acssynbio.5c00154. Epub 2025 May 19.
5
Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design.
J Mol Biol. 2017 Jan 20;429(2):220-236. doi: 10.1016/j.jmb.2016.11.031. Epub 2016 Dec 6.
6
PERRC: Protease Engineering with Reactant Residence Time Control.
bioRxiv. 2025 Mar 4:2025.03.02.641063. doi: 10.1101/2025.03.02.641063.
8
Subcellular determinants of orthoflavivirus protease activity.
bioRxiv. 2025 Jan 31:2025.01.31.635871. doi: 10.1101/2025.01.31.635871.
9
Protease activity as a prognostic factor for wound healing in venous leg ulcers.
Cochrane Database Syst Rev. 2018 Sep 1;9(9):CD012841. doi: 10.1002/14651858.CD012841.pub2.
10
Macrocyclic Phage Display for Identification of Selective Protease Substrates.
J Am Chem Soc. 2025 Jul 30;147(30):26307-26318. doi: 10.1021/jacs.5c04424. Epub 2025 Jul 18.

本文引用的文献

1
Ultra-efficient Integration of Gene Libraries onto Yeast Cytosolic Plasmids.
ACS Synth Biol. 2025 Apr 18;14(4):1002-1008. doi: 10.1021/acssynbio.4c00786. Epub 2025 Mar 24.
2
High-Resolution Substrate Specificity Profiling of SARS-CoV-2 M; Comparison to SARS-CoV M.
ACS Chem Biol. 2024 Jul 19;19(7):1474-1483. doi: 10.1021/acschembio.4c00096. Epub 2024 Jun 12.
3
Modular and integrative activity reporters enhance biochemical studies in the yeast ER.
Protein Eng Des Sel. 2024 Jan 29;37. doi: 10.1093/protein/gzae008.
4
Applications of protein ubiquitylation and deubiquitylation in drug discovery.
J Biol Chem. 2024 May;300(5):107264. doi: 10.1016/j.jbc.2024.107264. Epub 2024 Apr 4.
5
A combinatorial strategy for HRV 3C protease engineering to achieve the N-terminal free cleavage.
Int J Biol Macromol. 2024 Apr;265(Pt 2):131066. doi: 10.1016/j.ijbiomac.2024.131066. Epub 2024 Mar 21.
6
Improving Protein Expression, Stability, and Function with ProteinMPNN.
J Am Chem Soc. 2024 Jan 24;146(3):2054-2061. doi: 10.1021/jacs.3c10941. Epub 2024 Jan 9.
7
Leveraging yeast sequestration to study and engineer posttranslational modification enzymes.
Biotechnol Bioeng. 2024 Mar;121(3):903-914. doi: 10.1002/bit.28621. Epub 2023 Dec 11.
8
Mim8, a novel factor VIIIa mimetic bispecific antibody, shows favorable safety and pharmacokinetics in healthy adults.
Res Pract Thromb Haemost. 2023 Aug 23;7(6):102181. doi: 10.1016/j.rpth.2023.102181. eCollection 2023 Aug.
9
Prediction and design of protease enzyme specificity using a structure-aware graph convolutional network.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2303590120. doi: 10.1073/pnas.2303590120. Epub 2023 Sep 20.
10
Engineering of TEV protease variants with redesigned substrate specificity.
Biotechnol J. 2023 Nov;18(11):e2200625. doi: 10.1002/biot.202200625. Epub 2023 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验