Suppr超能文献

利用堆叠机器学习模型和优化方法来改进网络攻击检测。

Leveraging stacking machine learning models and optimization for improved cyberattack detection.

作者信息

Pramanick Neha, Mathew Jimson, Selvarajan Shitharth, Agarwal Mayank

机构信息

Computer Science and Engineering, IIT Patna, Patna, Bihar, 801103, India.

Department of Computer Science, Kebri Dehar University, 250, Kebri Dehar, Ethiopia.

出版信息

Sci Rep. 2025 May 14;15(1):16757. doi: 10.1038/s41598-025-01052-9.

Abstract

The ever-growing number of complex cyber attacks requires the need for high-level intrusion detection systems (IDS). While the available research deals with traditional, hybrid, and ensemble methods for network data analysis, serious challenges are still being met in terms of producing robust and highly accurate detection systems. There are high hurdles in managing high-dimensional network traffic since current methodologies are limited in dealing with imbalanced data issues of minority classes versus the majority and high false positive rate in classification accuracy. This study introduces an innovative framework that directly addresses these persistent challenges through a novel approach to intrusion detection. The proposed method integrates two ML models: J48 and ExtraTreeClassifier for classification. Besides, we propose an improved equilibrium optimizer (EO) approach whereby the previous EO is modified. In this enhanced equilibrium optimizer (EEO), the Fisher score and accuracy score of the K-Nearest Neighbors (KNN) algorithm select the attributes optimally, whereas the synthetic minority oversampling technique combined with iterative partitioning filters (SMOTE-IPF) used to provide class balancing. The KNN technique is also used for data imputation to improve the overall system accuracy. The superior performance of the framework has been validated experimentally on several benchmark datasets, i.e., NSL-KDD, and UNSW-NB15, achieving 99.7% and 98.1% accuracy and F1 score 99.6 and 98.0 respectively. By subjecting the system to a comparative analysis with recent state-of-the-art works, this paper has shown that the proposed methodology yields better improvement in feature selection precision classification accuracy, handling of minority class instance, less demanding storage and computational efficiency.

摘要

日益增多的复杂网络攻击需要高级入侵检测系统(IDS)。虽然现有研究涉及网络数据分析的传统方法、混合方法和集成方法,但在构建强大且高度准确的检测系统方面仍面临严峻挑战。管理高维网络流量存在很大障碍,因为当前方法在处理少数类与多数类的不平衡数据问题以及分类准确性方面的高误报率方面存在局限性。本研究引入了一个创新框架,通过一种新颖的入侵检测方法直接应对这些长期存在的挑战。所提出的方法集成了两个机器学习模型:用于分类的J48和ExtraTreeClassifier。此外,我们提出了一种改进的平衡优化器(EO)方法,对先前的EO进行了修改。在这种增强的平衡优化器(EEO)中,K近邻(KNN)算法的Fisher分数和准确性分数用于最优地选择属性,而合成少数类过采样技术与迭代划分滤波器(SMOTE - IPF)相结合用于提供类平衡。KNN技术还用于数据插补以提高整体系统准确性。该框架的卓越性能已在多个基准数据集(即NSL - KDD和UNSW - NB15)上通过实验得到验证,准确率分别达到99.7%和98.1%,F1分数分别为99.6和98.0。通过将该系统与近期的先进工作进行对比分析,本文表明所提出的方法在特征选择精度、分类准确性、少数类实例处理、存储需求和计算效率方面有更好的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a4/12078668/6855d0e74fe8/41598_2025_1052_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验