Zhou Ye, Vasko Petra, Zhu Yujiang, Wang Jingyan, Kalha Curran, Regoutz Anna, Hashibon Adham, Tai Yanlong, Hwang Gi Byoung, Knapp Caroline E
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Small Methods. 2025 Jul;9(7):e2401371. doi: 10.1002/smtd.202401371. Epub 2025 May 15.
For the rapidly growing demands and expanding range of applications of printed electronics in medicine lower processing temperatures and simpler steps are preferred to minimize the fabrication processes onto a range of substrates. Various hybrid inks are formulated for fabricating multi-compositional functional patterns with fewer manufacturing processes. However, most hybrid inks can only form patterns with fully-mixed compositional distribution. This study proposes a novel hybrid metal-based ink formulation pathway and develops a particle-free Ag-Cu hybrid metal-organic decomposition (MOD) ink. When sintering under N the in situ formed Ag and Cu nano-particulates during the sintering process self-regulate into a unique vertical compositional gradient with Cu dominant on top and the majority of Ag existing beneath. Highly conductive (1.88 ± 0.7 × 10 S m) metallic patterns are fabricated by single-step inkjet printing at low temperature (<150 °C) on both rigid and cellulose fiber substrates. When sintered under air a porous CuO layer is generated on the surface with high electrocatalytic activity with glucose (stable for over 2 h of continuous measurement). This work shows the feasibility of fabricating a glucose sensor including electrode layer and functional layer by single-step printing.
对于印刷电子在医学领域迅速增长的需求和不断扩大的应用范围,较低的加工温度和更简单的步骤更受青睐,以便将制造工艺简化到一系列基材上。人们配制了各种混合墨水,以通过更少的制造工艺制造多成分功能图案。然而,大多数混合墨水只能形成成分完全混合分布的图案。本研究提出了一种新型的基于金属的混合墨水配方途径,并开发了一种无颗粒的Ag-Cu混合金属有机分解(MOD)墨水。在氮气气氛下烧结时,烧结过程中原位形成的Ag和Cu纳米颗粒会自我调节成一种独特的垂直成分梯度,顶部以Cu为主,大部分Ag存在于下方。通过在刚性和纤维素纤维基材上低温(<150°C)单步喷墨打印制备出高导电性(1.88±0.7×10 S m)的金属图案。在空气中烧结时,表面会生成具有高葡萄糖电催化活性的多孔CuO层(连续测量超过2小时稳定)。这项工作展示了通过单步打印制造包括电极层和功能层的葡萄糖传感器的可行性。