Shams Shamsiya, Bindhu B, Murali Adhigan, Ramesh R, Al Souwaileh Abdullah, Han Sung Soo
Department of Physics, Noorul Islam Centre for Higher Education Kumaracoil Thuckalay 629180 Tamilnadu India
School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
RSC Adv. 2025 May 14;15(20):16035-16049. doi: 10.1039/d5ra02227d. eCollection 2025 May 12.
Developing high-performance energy storage materials is essential to meet the increasing global demand for sustainable energy solutions. In this study, a novel strategy is employed to synthesize polyethylene glycol-assisted boron nitride/hematite (PEG-BN/α-FeO) hybrid composites through a hydrothermal process. Polyethylene glycol(PEG) serves as both a dispersant and a non-covalent linker that bridges hematite nanoparticles and BN sheets. With a combination of van der Waals interaction and hydrogen bonding with the component materials, PEG enables stable and homogeneous dispersion of hematite on the otherwise inert and agglomeration-prone BN surface. This dual interaction approach enables controlled interface engineering, solving one of the major challenges commonly faced in the synthesis of BN-based composites. It also acts as a functional modifier that modulates the interfacial interactions and regulates the nucleation and dispersion of α-FeO nanoparticles within the BN matrix. The incorporation of PEG enhanced the electrochemical and structural properties of the hybrid composite. Structural and morphological characterizations confirmed the uniform dispersion of α-FeO within the BN matrix, with PEG enhancing the interfacial interactions and overall material stability. TGA demonstrated that PEG incorporation significantly improved the thermal stability of the composites, delaying degradation and preserving structural integrity under high-temperature conditions. Electrochemical measurements, including CV and GCD analysis in a 6 M KOH electrolyte, revealed superior charge storage capabilities for PEG-BN/α-FeO compared to BN/α-FeO. This hybrid composite exhibited a remarkable specific capacitance of 361.6 F g at a current density of 3 A g, significantly outperforming the individual components. The GCD studies display an enhanced charge retention capability of the hybrid composite with a coulombic efficiency of 83%, indicating reduced internal resistance and improved kinetics. Additionally, electrochemical impedance spectroscopy indicated a lower charge transfer resistance and enhanced conductivity in PEG-modified composites. The composite also retained 85% of its initial capacitance after 5000 cycles, demonstrating excellent cyclic stability. The improved electrochemical performance of PEG-BN/α-FeO hybrid composites is attributed to the synergistic effects of BN and α-FeO, facilitated by PEG, which acts as a thermal buffer, prevents agglomeration, and enhances electrolyte-electrode interactions. These findings underscore the potential of PEG-assisted BN/α-FeO composites as advanced electrode materials for next-generation supercapacitors and other electrochemical storage devices.
开发高性能储能材料对于满足全球对可持续能源解决方案日益增长的需求至关重要。在本研究中,采用了一种新颖的策略,通过水热法合成聚乙二醇辅助的氮化硼/赤铁矿(PEG-BN/α-FeO)杂化复合材料。聚乙二醇(PEG)既作为分散剂,又作为连接赤铁矿纳米颗粒和氮化硼片的非共价连接体。通过与组成材料的范德华相互作用和氢键结合,PEG能够使赤铁矿在原本惰性且易团聚的氮化硼表面稳定且均匀地分散。这种双重相互作用方法实现了可控的界面工程,解决了氮化硼基复合材料合成中常见的主要挑战之一。它还作为一种功能改性剂,调节界面相互作用并调节α-FeO纳米颗粒在氮化硼基质中的成核和分散。PEG的加入增强了杂化复合材料的电化学和结构性能。结构和形态表征证实了α-FeO在氮化硼基质中的均匀分散,PEG增强了界面相互作用和整体材料稳定性。热重分析表明,PEG的加入显著提高了复合材料的热稳定性,延缓了降解并在高温条件下保持了结构完整性。电化学测量,包括在6 M KOH电解液中的循环伏安法和恒电流充放电分析,表明与BN/α-FeO相比,PEG-BN/α-FeO具有优异的电荷存储能力。这种杂化复合材料在3 A g的电流密度下表现出361.6 F g的显著比电容,明显优于各个组分。恒电流充放电研究显示杂化复合材料具有增强的电荷保持能力,库仑效率为83%,表明内阻降低且动力学性能改善。此外,电化学阻抗谱表明PEG改性复合材料的电荷转移电阻较低且电导率增强。该复合材料在5000次循环后还保留了其初始电容的85%,表现出优异的循环稳定性。PEG-BN/α-FeO杂化复合材料电化学性能的改善归因于BN和α-FeO的协同效应,PEG起到热缓冲作用,防止团聚并增强电解质-电极相互作用。这些发现强调了PEG辅助的BN/α-FeO复合材料作为下一代超级电容器和其他电化学储能装置的先进电极材料的潜力。