Chauhan Waseem, Sj Sudharshan, Ferdowsi Shirin, Kafle Sweta, Zennadi Rahima
Department of Physiology, University of Tennessee Health Science Center, Memphis, TN.
Circ Res. 2025 Jul 18;137(3):e40-e61. doi: 10.1161/CIRCRESAHA.124.325093. Epub 2025 May 15.
In sickle cell disease (SCD), erythrocyte reactive oxygen species (ROS) production and oxidative stress play a critical role in vaso-occlusion, a hallmark of SCD. Small noncoding nucleolar RNAs (snoRNAs) of the locus have been described as regulators of ROS levels. However, whether snoRNAs are present in sickle red blood cells (RBCs) and regulate ROS levels and whether they contribute to SCD pathophysiology remain unknown.
To determine whether sickle RBC ROS levels are associated with snoRNA levels and identify the mechanism by which they regulate ROS and snoRNAs' effects on SCD hemodynamics, we used human RBCs, snoRNA knockout sickle mice, K562 , , , , and the control knockout mutants generated by CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 protein)-targeted genome editing, and genetic targeting with antisense oligonucleotides.
Excessive ROS production in sickle RBCs of patients with SCD is associated with high snoRNAs , , , and levels. , , and regulate ROS and hydrogen peroxide levels in sickle erythroid populations by modulating peroxidase activity. This was due to - and -guided 2'-O-methylation on (peroxiredoxin 2) messenger RNA, a modification conveyed by fibrillarin during erythropoiesis, subsequently reducing Prdx2 expression and activity. The snoRNA impaired Prdx2 expression/activity but independently of messenger RNA 2'-O-methylation. Excess sickle RBC ROS increased in turn snoRNAs levels. In vivo targeting combinations of + and ++ in sickle mice with antisense oligonucleotide blunted RBC ROS generation, improved erythropoiesis and anemia, alleviated leukocytosis and endothelial damage, diminished cell adhesion in inflamed vessels and vaso-occlusion, restored blood flow, and reduced animal mortality.
snoRNAs and specifically increase ROS levels, which, in turn, regulate snoRNA expression, in sickle erythroid cells, modulating Prdx2 expression/activity, subsequently impairing hemodynamics. Targeted U34+ with antisense oligonucleotide may represent a novel and safe therapy to ameliorate erythropoiesis and downstream events in SCD.
在镰状细胞病(SCD)中,红细胞活性氧(ROS)的产生和氧化应激在血管阻塞中起关键作用,血管阻塞是SCD的一个标志。该基因座的小非编码核仁RNA(snoRNAs)已被描述为ROS水平的调节因子。然而,snoRNAs是否存在于镰状红细胞(RBCs)中并调节ROS水平,以及它们是否对SCD病理生理学有影响仍不清楚。
为了确定镰状RBC的ROS水平是否与snoRNA水平相关,并确定它们调节ROS的机制以及snoRNAs对SCD血流动力学的影响,我们使用了人类RBCs、snoRNA基因敲除的镰状小鼠、K562细胞系、CRISPR-Cas9(成簇规律间隔短回文重复序列/Cas9蛋白)靶向基因组编辑产生的对照基因敲除突变体,以及反义寡核苷酸的基因靶向。
SCD患者镰状RBC中过量的ROS产生与高水平的snoRNAs U34、U14、U15和U24相关。U34、U14和U15通过调节过氧化物酶活性来调节镰状红细胞群体中的ROS和过氧化氢水平。这是由于在过氧化物还原酶2(Prdx2)信使RNA上由U34和U14引导的2'-O-甲基化,这种修饰在红细胞生成过程中由纤维蛋白原传递,随后降低了Prdx2的表达和活性。snoRNA U24损害Prdx2的表达/活性,但独立于信使RNA的2'-O-甲基化。过量的镰状RBC ROS反过来又增加了snoRNAs水平。在镰状小鼠体内用反义寡核苷酸靶向U34+和U14+ +的组合可减弱RBC ROS的产生,改善红细胞生成和贫血,减轻白细胞增多和内皮损伤,减少炎症血管中的细胞粘附和血管阻塞,恢复血流,并降低动物死亡率。
snoRNAs U34和U14特异性地增加ROS水平,进而调节snoRNA表达,在镰状红细胞中调节Prdx2的表达/活性,随后损害血流动力学。用反义寡核苷酸靶向U34+可能代表一种改善SCD中红细胞生成和下游事件的新型安全疗法。