免疫受体酪氨酸抑制基序的磷酸化驱动吲哚胺2,3-双加氧酶1在酶促和非酶促状态之间的结构转变。
Phosphorylation of ITIM motifs drives the structural transition of indoleamine 2,3-dioxygenase 1 between enzymatic and non-enzymatic states.
作者信息
Hoffka Gyula, Hornyák Lilla, Székvölgyi Lóránt, Miskei Márton
机构信息
Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Doctoral School of Molecular Cell and Immunobiology, University of Debrecen, Debrecen, Hungary.
出版信息
Protein Sci. 2025 Jun;34(6):e70152. doi: 10.1002/pro.70152.
Indoleamine 2,3-dioxygenase 1 (IDO1) is the rate-limiting enzyme in tryptophan metabolism that plays a central role in immune regulation across a range of diseases, including cancer. Beyond its enzymatic role, IDO1 has a non-enzymatic function that remains poorly understood. This study explores how phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIMs) modulates IDO1's structural dynamics and functional states. Using molecular dynamics simulations and structural analysis, we show that phosphorylation acts as a molecular switch, inducing conformational changes that regulate heme-binding, remodel specific loop regions, and govern protein-protein interactions with SHP1, SHP2, and SOCS3. Notably, Tyr249 phosphorylation inhibits enzymatic activity by compacting the heme-binding pocket, creating steric hindrance that prevents cofactor binding. In contrast, Tyr111 phosphorylation enhances interactions with SHP1 or SHP2 proteins by embedding their C-terminal regions into the heme-binding pocket, also obstructing heme binding. Furthermore, Tyr249 phosphorylation promotes SOCS3 binding through the formation of a unique loop structure near the phosphorylation site. These findings provide a detailed mechanistic framework for understanding how ITIM phosphorylation orchestrates IDO1's functional transitions, effectively balancing its enzymatic and non-enzymatic functions.
吲哚胺2,3-双加氧酶1(IDO1)是色氨酸代谢中的限速酶,在包括癌症在内的一系列疾病的免疫调节中发挥核心作用。除了其酶促作用外,IDO1还具有一种尚未被充分理解的非酶功能。本研究探讨了基于免疫受体酪氨酸的抑制性基序(ITIMs)的磷酸化如何调节IDO1的结构动力学和功能状态。通过分子动力学模拟和结构分析,我们表明磷酸化充当分子开关,诱导构象变化,从而调节血红素结合、重塑特定环区,并控制与SHP1、SHP2和SOCS3的蛋白质-蛋白质相互作用。值得注意的是,酪氨酸249磷酸化通过压缩血红素结合口袋来抑制酶活性,产生空间位阻,阻止辅因子结合。相反,酪氨酸111磷酸化通过将SHP1或SHP2蛋白的C末端区域嵌入血红素结合口袋来增强与它们的相互作用,这也阻碍了血红素结合。此外,酪氨酸249磷酸化通过在磷酸化位点附近形成独特的环结构来促进SOCS3结合。这些发现为理解ITIM磷酸化如何协调IDO1的功能转变提供了详细的机制框架,有效地平衡了其酶促和非酶功能。