Suppr超能文献

创新霉素对色氨酸-tRNA合成酶的选择性抑制机制

Selective Inhibition Mechanism of Tryptophan-tRNA Synthetase by Chuangxinmycin.

作者信息

Han Xingli, Liu Zhiyong, Zhou Biao, Shi Yuanyuan, Hameed H M Adnan, Gao Yamin, Fang Cuiting, Zhao Xiongfang, Wu Linzhuan, Xiong Xiaoli, Yu Wei, Hong Bin, Zhang Tianyu

机构信息

State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.

Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.

出版信息

ACS Infect Dis. 2025 Jun 13;11(6):1577-1588. doi: 10.1021/acsinfecdis.5c00040. Epub 2025 May 15.

Abstract

Tuberculosis (TB), caused by (Mtb), represents a global health challenge, necessitating new treatments with distinct mechanisms of action (MOA) to combat drug resistance. Chuangxinmycin (CM), characterized by its indole-dihydrothiopyran heterocyclic skeleton, exhibits potent antibacterial activity both and , with a minimum inhibitory concentration (MIC) of 0.25 μg/mL against Mtb. However, the MOA of CM against Mtb has remained obscure. Through comprehensive genetic, chemical rescue, and protein-drug interaction studies, coupled with biochemical analyses, we reveal that CM selectively binds and inhibits tryptophanyl-tRNA synthetase (TrpRS) encoded by , rather than anthranilate synthase (TrpE). Overexpression of in Mtb results in a 128-fold increase in the MIC of CM, indicating a fundamental cause of resistance, whereas overexpression of leads to modest resistance, suggesting a secondary effect. Conversely, knockdown of or enhances the susceptibility of Mtb to CM. Meanwhile, promoters of in CM-resistant Mtb mutants exhibit increased activity compared to the wild type. Furthermore, drug-protein interaction and biochemical assays have confirmed that while CM effectively inhibits TrpRS, mutants of TrpE show decreased affinity for tryptophan. These results establish that CM exerts its anti-Mtb effects by interfering with the tryptophan-tRNA linkage essential for protein synthesis.

摘要

由结核分枝杆菌(Mtb)引起的结核病(TB)是一项全球性的健康挑战,需要有具有独特作用机制(MOA)的新疗法来对抗耐药性。创新霉素(CM)以其吲哚 - 二氢硫吡喃杂环骨架为特征,在体内和体外均表现出强大的抗菌活性,对结核分枝杆菌的最低抑菌浓度(MIC)为0.25μg/mL。然而,CM对结核分枝杆菌的作用机制仍不清楚。通过全面的遗传学、化学拯救和蛋白质 - 药物相互作用研究,结合生化分析,我们发现CM选择性结合并抑制由trpA编码的色氨酰 - tRNA合成酶(TrpRS),而不是邻氨基苯甲酸合酶(TrpE)。在结核分枝杆菌中过表达trpA会导致CM的MIC增加128倍,表明耐药性的根本原因,而过表达trpE则导致适度耐药,表明是次要效应。相反,敲低trpA或trpE会增强结核分枝杆菌对CM的敏感性。同时,与野生型相比,CM耐药结核分枝杆菌突变体中trpA的启动子活性增加。此外,药物 - 蛋白质相互作用和生化分析证实,虽然CM有效抑制TrpRS,但TrpE的突变体对色氨酸的亲和力降低。这些结果表明,CM通过干扰蛋白质合成所必需的色氨酸 - tRNA连接来发挥其抗结核分枝杆菌的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验