Rodríguez Cristian F, Guzmán-Sastoque Paula, Santacruz-Belalcazar Alan, Rodriguez Coryna, Villamarin Paula, Reyes Luis H, Cruz Juan C
Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia.
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universi-dad de los Andes, Bogotá, Colombia.
Expert Opin Drug Deliv. 2025 May 28:1-30. doi: 10.1080/17425247.2025.2506829.
Magnetoliposomes represent a transformative advancement in nanomedicine by integrating magnetic nanoparticles with liposomal structures, creating multifunctional delivery platforms that overcome key limitations of conventional drug carriers. These hybrid systems enable precision targeting through external magnetic fields, controlled release via magnetic hyperthermia, and real-time theranostic capabilities, offering unprecedented spatiotemporal control over therapeutic administration.
This manuscript focused primarily on studies from 2023-2025 however, a few select older references were included to provide background and context.This review examines the fundamental design principles of Magnetoliposomes, including bilayer composition, nanoparticle integration strategies, and physicochemical properties governing their biological performance. We comprehensively assess synthesis methodologies - from traditional thin-film hydration to advanced microfluidic approaches - highlighting their impact on colloidal stability, drug encapsulation, and scaling potential. Characterization techniques essential for quality control and regulatory approval are systematically reviewed, followed by applications across oncology, gene delivery, neurology, and infectious disease treatment, supported by recent experimental evidence.
While magnetoliposomes show remarkable therapeutic versatility, their clinical translation requires addressing biocompatibility concerns, manufacturing scalability, and regulatory hurdles. Integration with artificial intelligence, organ-on-chip technologies, and personalized medicine approaches will likely accelerate their development toward clinical reality, potentially revolutionizing treatment paradigms for complex diseases through tailored therapeutic interventions.
磁脂质体通过将磁性纳米颗粒与脂质体结构相结合,代表了纳米医学领域的一项变革性进展,创造了多功能递送平台,克服了传统药物载体的关键局限性。这些混合系统能够通过外部磁场实现精准靶向,通过磁热疗实现控释,并具备实时诊疗能力,为治疗给药提供了前所未有的时空控制。
本手稿主要聚焦于2023年至2025年的研究,不过也纳入了一些精选的早期参考文献以提供背景和上下文。本综述考察了磁脂质体的基本设计原则,包括双层组成、纳米颗粒整合策略以及决定其生物学性能的物理化学性质。我们全面评估了合成方法——从传统的薄膜水化法到先进的微流控方法——强调了它们对胶体稳定性、药物包封和放大潜力的影响。系统地综述了质量控制和监管批准所需的表征技术,随后介绍了磁脂质体在肿瘤学、基因递送、神经学和传染病治疗等领域的应用,并辅以近期的实验证据。
虽然磁脂质体展现出卓越的治疗多功能性,但其临床转化需要解决生物相容性问题、制造可扩展性和监管障碍。与人工智能、芯片器官技术和个性化医疗方法相结合,可能会加速其向临床实际应用的发展,通过定制化治疗干预,有可能彻底改变复杂疾病的治疗模式。