文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Distinguishing critical microbial community shifts from normal temporal variability in human and environmental ecosystems.

作者信息

Dörr Ann-Kathrin, Imangaliyev Sultan, Karadeniz Utku, Schmidt Tina, Meyer Folker, Kraiselburd Ivana

机构信息

Department of Medicine, Institute for Artificial Intelligence in Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Department of Computer Science, University of Duisburg-Essen, Essen, Germany.

出版信息

Sci Rep. 2025 May 15;15(1):16934. doi: 10.1038/s41598-025-01781-x.


DOI:10.1038/s41598-025-01781-x
PMID:40374711
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12081599/
Abstract

Differentiating significant microbial community changes from normal fluctuations is vital for understanding microbial dynamics in human and environmental ecosystems. This knowledge could enable early warning systems to monitor critical changes affecting human or environmental health. We applied 16S rRNA gene sequencing and time-series analysis to model bacterial abundance trajectories in human gut and wastewater microbiomes. We evaluated various model architectures using datasets from two human studies and five wastewater settings. Long short-term memory (LSTM) models consistently outperformed other models in predicting bacterial abundances and detecting outliers, as measured by multiple metrics. Prediction intervals for each genus allowed us to identify significant changes and signaling shifts in community states. This study proposes a machine learning model capable of monitoring microbial communities and providing insights into their responses to internal and external factors in medical and environmental settings.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/c99c1fe05d1c/41598_2025_1781_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/c2ce7e36169a/41598_2025_1781_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/cf87b5f53dec/41598_2025_1781_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/bf48718f62c9/41598_2025_1781_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/6d853535f476/41598_2025_1781_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/e541db6f7d18/41598_2025_1781_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/91110e62d944/41598_2025_1781_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/3db09073c285/41598_2025_1781_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/f8fff42aadce/41598_2025_1781_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/049e8bb7f8c5/41598_2025_1781_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/c99c1fe05d1c/41598_2025_1781_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/c2ce7e36169a/41598_2025_1781_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/cf87b5f53dec/41598_2025_1781_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/bf48718f62c9/41598_2025_1781_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/6d853535f476/41598_2025_1781_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/e541db6f7d18/41598_2025_1781_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/91110e62d944/41598_2025_1781_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/3db09073c285/41598_2025_1781_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/f8fff42aadce/41598_2025_1781_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/049e8bb7f8c5/41598_2025_1781_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2606/12081599/c99c1fe05d1c/41598_2025_1781_Fig10_HTML.jpg

相似文献

[1]
Distinguishing critical microbial community shifts from normal temporal variability in human and environmental ecosystems.

Sci Rep. 2025-5-15

[2]
PUPpy: a primer design pipeline for substrain-level microbial detection and absolute quantification.

mSphere. 2024-7-30

[3]
Robust prediction of colorectal cancer via gut microbiome 16S rRNA sequencing data.

J Med Microbiol. 2024-10

[4]
Microbial indicators of environmental perturbations in coral reef ecosystems.

Microbiome. 2019-6-21

[5]
Towards Quantitative Microbiome Community Profiling Using Internal Standards.

Appl Environ Microbiol. 2019-2-20

[6]
Generation of Comprehensive Ecosystem-Specific Reference Databases with Species-Level Resolution by High-Throughput Full-Length 16S rRNA Gene Sequencing and Automated Taxonomy Assignment (AutoTax).

mBio. 2020-9-22

[7]
Bacterial and fungal community structures in Hulun Lake are regulated by both stochastic processes and environmental factors.

Microbiol Spectr. 2024-5-2

[8]
Spatial variability of bacterial biofilm communities in a wastewater effluent-impacted suburban stream ecosystem.

Microbiol Spectr. 2024-11-5

[9]
Gut microbial diversity during pregnancy and early infancy: an exploratory study in the Indian population.

FEMS Microbiol Lett. 2020-2-1

[10]
Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes.

Microbiome. 2018-10-23

本文引用的文献

[1]
TEMPTED: time-informed dimensionality reduction for longitudinal microbiome studies.

Genome Biol. 2024-12-19

[2]
Global wastewater surveillance for pathogens with pandemic potential: opportunities and challenges.

Lancet Microbe. 2025-1

[3]
Interpolation of microbiome composition in longitudinal data sets.

mBio. 2024-9-11

[4]
Impact of the microbiome on human, animal, and environmental health from a One Health perspective.

Sci One Health. 2023-8-25

[5]
SARS-CoV-2 viral titer measurements in Ontario, Canada wastewaters throughout the COVID-19 pandemic.

Sci Data. 2024-6-21

[6]
Critical illness and the gut microbiome.

Intensive Care Med. 2024-10

[7]
ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics.

Nat Rev Microbiol. 2024-10

[8]
Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness.

Gut Microbes. 2024

[9]
Transfer learning with graph neural networks for improved molecular property prediction in the multi-fidelity setting.

Nat Commun. 2024-2-26

[10]
Gut microbiome signature of metabolically healthy obese individuals according to anthropometric, metabolic and inflammatory parameters.

Sci Rep. 2024-2-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索