Liu Yanan, Jalali Sara, Joober Ridha, Lepage Martin, Iyer Srividya, Shah Jai, Benrimoh David
Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
Douglas Research Centre, Montreal, QC, Canada.
Npj Ment Health Res. 2025 May 15;4(1):18. doi: 10.1038/s44184-025-00129-7.
Clinical course after first episode psychosis (FEP) is heterogeneous. Subgrouping and predicting longitudinal symptom trajectories after FEP may help develop personalized treatment approaches. We utilized k-means clustering to identify clusters of 411 FEP patients based on longitudinal positive and negative symptoms. Three clusters were identified. Cluster 1 exhibits lower positive and negative symptoms (LS), lower antipsychotic dose, and relatively higher affective psychosis; Cluster 2 shows lower positive symptoms, persistent negative symptoms (LPPN), and intermediate antipsychotic doses; Cluster 3 presents persistently high levels of both positive and negative symptoms (PPNS), and higher antipsychotic doses. We predicted cluster membership (AUC of 0.74) using ridge logistic regression on baseline data. Key predictors included lower levels of apathy, affective flattening, and anhedonia/asociality in the LS cluster, compared to the LPPN cluster. Hallucination severity, positive thought disorder and manic hostility predicted PPNS. These results help parse the FEP trajectory heterogeneity and may facilitate the development of personalized treatments.
首发精神病(FEP)后的临床病程具有异质性。对FEP后的纵向症状轨迹进行亚组划分和预测可能有助于制定个性化的治疗方法。我们利用k均值聚类方法,根据纵向的阳性和阴性症状,对411名FEP患者进行聚类。共识别出三个聚类。聚类1表现出较低的阳性和阴性症状(LS)、较低的抗精神病药物剂量以及相对较高的情感性精神病;聚类2显示出较低的阳性症状、持续性阴性症状(LPPN)以及中等剂量的抗精神病药物;聚类3呈现出持续高水平的阳性和阴性症状(PPNS)以及较高的抗精神病药物剂量。我们使用岭逻辑回归对基线数据进行分析,预测聚类归属(曲线下面积为0.74)。关键预测因素包括,与LPPN聚类相比,LS聚类中较低水平的情感淡漠、情感迟钝以及快感缺失/社交退缩。幻觉严重程度、阳性思维障碍和躁狂性敌意可预测PPNS。这些结果有助于剖析FEP轨迹的异质性,并可能促进个性化治疗的发展。