Suppr超能文献

基于近红外光谱的多性状预测模型对木豆的营养成分分析

Nutritional profiling of horse gram through NIRS-based multi-trait prediction modelling.

作者信息

Kumari Manju, Padhi Siddhant Ranjan, Arya Mamta, Yadav Rashmi, Latha M, Pandey Anjula, Singh Rakesh, Bhardwaj Chellapilla, Kumar Atul, Rana Jai Chand, Bhatt Kailash Chandra, Bhardwaj Rakesh, Riar Amritbir

机构信息

ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.

ICAR-National Bureau of Plant Genetic Resources - RS, Bhowali, Uttarakhand, India.

出版信息

Sci Rep. 2025 May 15;15(1):16950. doi: 10.1038/s41598-025-01668-x.

Abstract

Horse gram (Macrotyloma uniflorum (Lam.) Verd.) is an underutilised legume from the Indian subcontinent. Being a nutritious legume, it plays an important role in human nutrition in developing countries like India. Conventional assessment of nutritional traits, are labour and time intensive for screening of huge germplasm, hence alternative and rapid technique for conventional method for the determination of nutritional components of horse gram flour is needed. NIRS can be used for this purpose as it gives rapid and precise results for most of the plant products. In this study, a highly diverse collection of 139 horse gram accessions was utilized to generate reference data. Prediction models were developed for protein, starch, TSS, phenols, and phytic acid using MPLS regression method with spectral preprocessing using SNV-DT to remove scatter effects and baseline noise. Models were optimized for derivatives, gap selection, and smoothening and evaluated using different statistics including RSQ, bias and RPD. The RSQ and RPD for the best fit models obtained were protein (0.701; 1.85), starch (0.987; 4.03), TSS (0.800; 4.06), phenols (0.778; 2.15) and phytic acid (0.730; 1.88) indicating developed models are good for screening large number of germplasm collections and market samples. Statistical analyses, including paired t-tests, correlation, and reliability assessments, validated the strength of these models. This study represents the first report introducing a rapid, multi-trait evaluation approach for horse gram germplasm, highlighting its high predictive accuracy for pre-breeding applications. High throughput germplasm screening can be done through these developed models to identify trait-specific germplasm, which can be recommended to develop healthy products and thus can also be recommended for production in the farmer field simultaneously.

摘要

黑豆(Macrotyloma uniflorum (Lam.) Verd.)是一种来自印度次大陆但未得到充分利用的豆科植物。作为一种营养丰富的豆类,它在印度等发展中国家的人类营养中发挥着重要作用。传统的营养性状评估对于筛选大量种质来说既耗费人力又耗时,因此需要一种替代传统方法的快速技术来测定黑豆粉的营养成分。近红外光谱法(NIRS)可用于此目的,因为它能为大多数植物产品提供快速而精确的结果。在本研究中,利用139份高度多样化的黑豆种质来生成参考数据。使用最小二乘支持向量机(MPLS)回归方法并结合标准正态变量变换 - 导数变换(SNV - DT)进行光谱预处理以消除散射效应和基线噪声,建立了蛋白质、淀粉、总可溶性固形物(TSS)、酚类和植酸的预测模型。对模型的导数、间隔选择和平滑处理进行了优化,并使用包括决定系数(RSQ)、偏差和剩余预测偏差(RPD)在内的不同统计量进行评估。所得最佳拟合模型的RSQ和RPD分别为:蛋白质(0.701;1.85)、淀粉(0.987;4.03)、TSS(0.800;4.06)、酚类(0.778;2.15)和植酸(0.730;1.88),这表明所建立的模型适用于筛选大量的种质资源库和市场样品。包括配对t检验、相关性分析和可靠性评估在内的统计分析验证了这些模型的有效性。本研究首次报道了一种针对黑豆种质的快速、多性状评估方法,突出了其在育种前应用中的高预测准确性。通过这些建立的模型可以进行高通量种质筛选,以鉴定特定性状的种质,这些种质可被推荐用于开发健康产品,因此也可同时推荐给农民在田间生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec38/12081650/176e4f43aa3a/41598_2025_1668_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验