Suppr超能文献

基于个体化结构协方差网络揭示轻度认知障碍的异质性。

Revealing heterogeneity in mild cognitive impairment based on individualized structural covariance network.

作者信息

Wei Xiaotong, Xiong Ronglong, Xu Ping, Zhang Tingting, Zhang Junjun, Jin Zhenlan, Li Ling

机构信息

MOE Key Lab for Neuroinformation, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, 610054, China.

出版信息

Alzheimers Res Ther. 2025 May 15;17(1):106. doi: 10.1186/s13195-025-01752-4.

Abstract

BACKGROUND

Mild cognitive impairment (MCI) is a heterogeneous disorder with significant individual variabilities in clinical and biological features. Abnormal inter-regional structural covariance suggests disruption of the brain structural network in MCI. Most studies have examined group-level structural covariance alterations while ignoring individual-level differences. Hence, we aimed to investigate the heterogeneity of MCI using individual differential structural covariance network (IDSCN) analysis.

METHODS

T1-weighted images of 596 MCI patients and 309 cognitively normal (CN) were collected from the ADNI database as discovery dataset, and 122 MCI and 117 CN from the OASIS-3 dataset as validation cohort. We constructed each patient's IDSCN using regional gray matter volume and applied K-means clustering analysis to identify MCI subtypes based on significantly altered covariance edges. Then, clinical features, brain structure, and gene expression profiles were evaluated for each subtype.

RESULTS

In the ADNI dataset, MCI patients exhibited significant alterations in structural covariance edges, mainly involving the hippocampus, parahippocampal gyrus, and amygdala. Two robust MCI subtypes were identified. Subtype 1 showed faster disease progression relative to subtype 2, which was validated in the independent OASIS-3 dataset. Significant differences between two subtypes were found in clinical cognition and biomarkers, cerebral atrophy patterns, and enriched genes for metal ion transport and neuron projection development. Finally, correlation analysis and functional annotation further revealed that the affected edges were related to cognitive performance and implicated in memory and emotion terms.

CONCLUSIONS

In summary, these findings offer new perspectives into understanding the heterogeneity of MCI and facilitate strategies for future precision medicine.

摘要

背景

轻度认知障碍(MCI)是一种异质性疾病,在临床和生物学特征上存在显著的个体差异。区域间结构协方差异常表明MCI患者脑结构网络遭到破坏。大多数研究考察的是组水平的结构协方差改变,而忽略了个体水平的差异。因此,我们旨在通过个体差异结构协方差网络(IDSCN)分析来研究MCI的异质性。

方法

从阿尔茨海默病神经影像倡议(ADNI)数据库收集596例MCI患者和309例认知正常(CN)者的T1加权图像作为发现数据集,并从OASIS-3数据集中收集122例MCI患者和117例CN者作为验证队列。我们使用区域灰质体积构建每位患者的IDSCN,并应用K均值聚类分析,基于显著改变的协方差边来识别MCI亚型。然后,对每个亚型的临床特征、脑结构和基因表达谱进行评估。

结果

在ADNI数据集中,MCI患者的结构协方差边出现显著改变,主要涉及海马体、海马旁回和杏仁核。识别出两种稳定的MCI亚型。相对于亚型2,亚型1的疾病进展更快,这在独立的OASIS-3数据集中得到了验证。在临床认知和生物标志物、脑萎缩模式以及金属离子转运和神经元投射发育的富集基因方面,发现两种亚型之间存在显著差异。最后,相关性分析和功能注释进一步表明,受影响的边与认知表现相关,并涉及记忆和情感方面。

结论

总之,这些发现为理解MCI的异质性提供了新的视角,并有助于未来精准医学策略的制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf91/12079994/348a6aa4eb3a/13195_2025_1752_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验