Suppr超能文献

基于超声B模式和中值图像的多模态深度学习乳腺肿瘤诊断

Breast tumor diagnosis via multimodal deep learning using ultrasound B-mode and Nakagami images.

作者信息

Muhtadi Sabiq, Gallippi Caterina M

机构信息

University of North Carolina at Chapel Hill, North Carolina State University, Lampe Joint Department of Biomedical Engineering, Chapel Hill, North Carolina, United States.

出版信息

J Med Imaging (Bellingham). 2025 Nov;12(Suppl 2):S22009. doi: 10.1117/1.JMI.12.S2.S22009. Epub 2025 May 14.

Abstract

PURPOSE

We propose and evaluate multimodal deep learning (DL) approaches that combine ultrasound (US) B-mode and Nakagami parametric images for breast tumor classification. It is hypothesized that integrating tissue brightness information from B-mode images with scattering properties from Nakagami images will enhance diagnostic performance compared with single-input approaches.

APPROACH

An EfficientNetV2B0 network was used to develop multimodal DL frameworks that took as input (i) numerical two-dimensional (2D) maps or (ii) rendered red-green-blue (RGB) representations of both B-mode and Nakagami data. The diagnostic performance of these frameworks was compared with single-input counterparts using 831 US acquisitions from 264 patients. In addition, gradient-weighted class activation mapping was applied to evaluate diagnostically relevant information utilized by the different networks.

RESULTS

The multimodal architectures demonstrated significantly higher area under the receiver operating characteristic curve (AUC) values ( ) than their monomodal counterparts, achieving an average improvement of 10.75%. In addition, the multimodal networks incorporated, on average, 15.70% more diagnostically relevant tissue information. Among the multimodal models, those using RGB representations as input outperformed those that utilized 2D numerical data maps ( ). The top-performing multimodal architecture achieved a mean AUC of 0.896 [95% confidence interval (CI): 0.813 to 0.959] when performance was assessed at the image level and 0.848 (95% CI: 0.755 to 0.903) when assessed at the lesion level.

CONCLUSIONS

Incorporating B-mode and Nakagami information together in a multimodal DL framework improved classification outcomes and increased the amount of diagnostically relevant information accessed by networks, highlighting the potential for automating and standardizing US breast cancer diagnostics to enhance clinical outcomes.

摘要

目的

我们提出并评估多模态深度学习(DL)方法,该方法结合超声(US)B 模式和 Nakagami 参数图像用于乳腺肿瘤分类。据推测,与单输入方法相比,将 B 模式图像中的组织亮度信息与 Nakagami 图像中的散射特性相结合将提高诊断性能。

方法

使用 EfficientNetV2B0 网络开发多模态 DL 框架,该框架将 B 模式和 Nakagami 数据的(i)数值二维(2D)地图或(ii)渲染的红绿蓝(RGB)表示作为输入。使用来自 264 名患者的 831 次 US 采集,将这些框架的诊断性能与单输入对应框架进行比较。此外,应用梯度加权类激活映射来评估不同网络利用的诊断相关信息。

结果

多模态架构在接收器操作特征曲线(AUC)值下的面积( )显著高于其单模态对应架构,平均提高了 10.75%。此外,多模态网络平均包含多 15.70%的诊断相关组织信息。在多模态模型中,使用 RGB 表示作为输入的模型优于使用 2D 数值数据地图的模型( )。当在图像级别评估性能时,表现最佳的多模态架构的平均 AUC为 0.896[95%置信区间(CI):0.813 至 0.959],当在病变级别评估时为 0.848(95%CI:0.755 至 0.903)。

结论

在多模态 DL 框架中结合 B 模式和 Nakagami 信息可改善分类结果,并增加网络访问的诊断相关信息量,突出了使 US 乳腺癌诊断自动化和标准化以改善临床结果的潜力。

相似文献

本文引用的文献

2
Cancer statistics, 2023.癌症统计数据,2023 年。
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验