Suppr超能文献

使用可解释机器学习算法预测胰腺神经内分泌肿瘤中的肝转移:一项基于监测、流行病学和最终结果(SEER)数据库的研究

Predicting liver metastasis in pancreatic neuroendocrine tumors with an interpretable machine learning algorithm: a SEER-based study.

作者信息

Bi Jinzhe, Yu Yaqun

机构信息

Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China.

出版信息

Front Med (Lausanne). 2025 May 1;12:1533132. doi: 10.3389/fmed.2025.1533132. eCollection 2025.

Abstract

BACKGROUND

Liver metastasis is the most common site of metastasis in pancreatic neuroendocrine tumors (PaNETs), significantly affecting patient prognosis. This study aims to develop machine learning algorithms to predict liver metastasis in PaNETs patients, assisting clinicians in the personalized clinical decision-making for treatment.

METHODS

We collected data on eligible PaNETs patients from the Surveillance, Epidemiology, and End Results (SEER) database for the period from 2010 to 2021. The Boruta algorithm and the Least Absolute Shrinkage and Selection Operator (LASSO) were used for feature selection. We applied 10 different machine learning algorithms to develop models for predicting the risk of liver metastasis in PaNETs patients. The model's performance was assessed using a variety of metrics, including the area under the receiver operating characteristic curve (AUC), the area under the precision-recall curve (AUPRC), decision curve analysis (DCA), calibration curves, accuracy, sensitivity, specificity, F1 score, and Kappa score. The SHapley Additive exPlanations (SHAP) were employed to interpret models, and the best-performing model was used to develop a web-based calculator.

RESULTS

The study included a cohort of 7,463 PaNETs patients, of whom 1,356 (18.2%) were diagnosed with liver metastasis at the time of initial diagnosis. Through the combined use of the Boruta and LASSO methods, T-stage, N-stage, tumor size, grade, surgery, lymphadenectomy, chemotherapy, and bone metastasis were identified as independent risk factors for liver metastasis in PaNETs. Compared to other machine learning algorithms, the gradient boosting machine (GBM) model exhibited superior performance, achieving an AUC of 0.937 (95% CI: 0.931-0.943), an AUPRC of 0.94, and an accuracy of 0.87. DCA and calibration curve analyses demonstrate that the GBM model provides better clinical decision-making capabilities and predictive performance. Furthermore, the SHAP framework revealed that surgery, N-stage, and T-stage are the primary decision factors influencing the machine learning model's predictions. Finally, based on the GBM algorithm, we developed an accessible web-based calculator to predict the risk of liver metastasis in PaNETs.

CONCLUSION

The GBM model excels in predicting the risk of liver metastasis in PaNETs patients, outperforming other machine learning models and providing critical support for developing personalized medical strategies in clinical practice.

摘要

背景

肝转移是胰腺神经内分泌肿瘤(PaNETs)最常见的转移部位,显著影响患者预后。本研究旨在开发机器学习算法以预测PaNETs患者的肝转移情况,协助临床医生进行个性化的治疗临床决策。

方法

我们从监测、流行病学和最终结果(SEER)数据库中收集了2010年至2021年期间符合条件的PaNETs患者的数据。使用博鲁塔算法和最小绝对收缩和选择算子(LASSO)进行特征选择。我们应用10种不同的机器学习算法来开发预测PaNETs患者肝转移风险的模型。使用多种指标评估模型性能,包括受试者工作特征曲线下面积(AUC)、精确召回率曲线下面积(AUPRC)、决策曲线分析(DCA)、校准曲线、准确性、敏感性、特异性、F1分数和卡帕分数。采用夏普利加性解释(SHAP)来解释模型,并使用性能最佳的模型开发基于网络的计算器。

结果

该研究纳入了7463例PaNETs患者队列,其中1356例(18.2%)在初诊时被诊断为肝转移。通过联合使用博鲁塔和LASSO方法,T分期、N分期、肿瘤大小、分级、手术、淋巴结清扫、化疗和骨转移被确定为PaNETs患者肝转移的独立危险因素。与其他机器学习算法相比,梯度提升机(GBM)模型表现出卓越的性能,AUC为0.937(95%CI:0.931 - 0.943),AUPRC为0.94,准确性为0.87。DCA和校准曲线分析表明,GBM模型具有更好的临床决策能力和预测性能。此外,SHAP框架显示手术、N分期和T分期是影响机器学习模型预测的主要决策因素。最后,基于GBM算法,我们开发了一个易于使用的基于网络的计算器来预测PaNETs患者的肝转移风险。

结论

GBM模型在预测PaNETs患者肝转移风险方面表现出色,优于其他机器学习模型,并为临床实践中制定个性化医疗策略提供了关键支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b963/12078274/5ac40d5d23db/fmed-12-1533132-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验