Suppr超能文献

一种新型自动化人体工程学评估工具的试点评估。

Pilot evaluation of a novel, automated ergonomics assessment tool.

作者信息

El Kurdi Bara, Babar Sumbal, Soroush Ali, Bapaye Jay, Wasserman Reid D, Echavarria Juan, Shahab Omer, Locke Cameron, Yang Jamie, Koachman Michael, Mönkemüller Klaus, Shaukat Aasma

机构信息

Gastroenterology, Carilion Clinic, Roanoke, United States.

Infectious Diseases, Carilion Clinic, Roanoke, United States.

出版信息

Endosc Int Open. 2025 May 12;13:a25689610. doi: 10.1055/a-2568-9610. eCollection 2025.

Abstract

BACKGROUND AND STUDY AIMS

Gastroenterologists are prone to endoscopy-related musculoskeletal injuries (ERI). Current interventions lack real-time monitoring and feedback. ErgoGenius, a novel artificial intelligence computer-vision tool, addresses this gap by providing continuous posture assessment and feedback without wearable motion trackers. The aim of this study was to determine the feasibility of ErgoGenius, its accuracy compared with human appraisers, and its ability to detect abnormal posture.

METHODS

The study was conducted at two large academic centers. The Rapid Entire Body Assessment (REBA) score was used as a surrogate for ergonomic performance and risk of injury. Ten endoscopists of varying gender, height, and weight were recorded performing endoscopic tasks in optimal vs. lowered bed positions. Videos were analyzed by ErgoGenius. A paired -test was used to compare REBA scores between bed positions.

RESULTS

ErgoGenius was successfully deployed in a controlled endoscopy setting. ErgoGenius achieved perfect internal agreement (rho = 1) and closely correlated with human appraisers (rho = 0.987). Average REBA scores were notably higher in the lowered bed position (mean 4.64) compared with the optimal position (mean 2.55), ( = 0.006).

CONCLUSIONS

ErgoGenius was successfully deployed to detect abnormal postures related to changes in bed position and quantify ERI risk. It performed at par with human appraisers. This tool shows promise in enhancing ergonomic practices among gastroenterologists and trainees, potentially leading to better health outcomes and reduced injury.

摘要

背景与研究目的

胃肠病学家容易遭受与内镜检查相关的肌肉骨骼损伤(ERI)。目前的干预措施缺乏实时监测和反馈。ErgoGenius是一种新型人工智能计算机视觉工具,通过在不使用可穿戴运动追踪器的情况下提供持续的姿势评估和反馈来弥补这一差距。本研究的目的是确定ErgoGenius的可行性、与人工评估者相比的准确性以及检测异常姿势的能力。

方法

该研究在两个大型学术中心进行。快速全身评估(REBA)评分用作人体工程学表现和受伤风险的替代指标。记录了10名不同性别、身高和体重的内镜医师在最佳床位与降低床位下执行内镜任务的情况。视频由ErgoGenius进行分析。采用配对t检验比较不同床位之间的REBA评分。

结果

ErgoGenius在受控的内镜检查环境中成功部署。ErgoGenius实现了完美的内部一致性(rho = 1),并与人工评估者密切相关(rho = 0.987)。与最佳床位(平均2.55)相比,降低床位时的平均REBA评分显著更高(平均4.64),(P = 0.006)。

结论

ErgoGenius成功部署以检测与床位变化相关的异常姿势并量化ERI风险。其表现与人工评估者相当。该工具在改善胃肠病学家和受训人员的人体工程学实践方面显示出前景,可能导致更好的健康结果并减少损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67a5/12080516/fc37c3773c71/10-1055-a-2568-9610_25710632.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验