Aguilar Joao, Rosú Silvana A, Ulloa José, Gunther German, Urbano Bruno F, Tricerri M Alejandra, Sánchez Susana A
Laboratorio de Interacciones Macromoleculares, Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile.
Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata "Dr Prof. Rodolfo R. Brenner" (INIBIOLP), CONICET, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Buenos Aires, Argentina.
Biophys Rev. 2025 Mar 28;17(2):385-394. doi: 10.1007/s12551-025-01303-z. eCollection 2025 Apr.
Traditional methodologies to study in vitro biological processes include simplified laboratory models where different parameters can be measured in a very controlled environment. The most used of these practices is cell plate-culturing in aqueous media. In this minimalistic model, essential components of the biological system might be ignored. One of them, disregarded for a long time, is the extracellular matrix (ECM). Extracellular matrix in eukaryotic cells is not only a frame for cells and biological components, but also an active partner of cellular metabolism and participates in several normal and pathological biological processes in a dynamic manner. ECM of eukaryotic cells has a very complex structure. Also, its mechanical properties (stiffness, viscoelasticity) depend on the organ it is associated with, and may vary from a very fluid (plasma) to a very solid (bones) structure. ECM structure and composition are very dynamic and experience temporal structural and topological changes, affecting all the existing interactions. When mimicking the ECM, three aspects are considered: the chemical environment and the physical and structural properties. In this review, we present two lines of research studying the role of the ECM in two biological implications: membrane fluidity heterogeneity and protein retention and aggregation. For these studies, we used biopolymeric matrices with very controlled features to evaluate the two events. We use traditional biochemical techniques and fluorescence microscopy to study the biological systems and traditional polymer techniques (rheology, SEM) to characterize the polymeric matrices.
研究体外生物过程的传统方法包括简化的实验室模型,在这种模型中,可以在非常可控的环境中测量不同参数。这些方法中最常用的是在水性介质中进行细胞平板培养。在这个简约模型中,生物系统的一些基本组成部分可能会被忽略。其中一个长期被忽视的部分就是细胞外基质(ECM)。真核细胞中的细胞外基质不仅是细胞和生物成分的框架,还是细胞代谢的活跃伙伴,并以动态方式参与多种正常和病理生物学过程。真核细胞的细胞外基质具有非常复杂的结构。此外,其机械性能(硬度、粘弹性)取决于与之相关的器官,其结构可能从非常流体状(血浆)到非常固体状(骨骼)不等。细胞外基质的结构和组成非常动态,会经历时间上的结构和拓扑变化,影响所有现有的相互作用。在模拟细胞外基质时,会考虑三个方面:化学环境以及物理和结构特性。在本综述中,我们展示了两条研究路线,研究细胞外基质在两个生物学影响方面的作用:膜流动性异质性以及蛋白质保留和聚集。对于这些研究,我们使用具有非常可控特性的生物聚合物基质来评估这两个事件。我们使用传统生化技术和荧光显微镜来研究生物系统,并使用传统聚合物技术(流变学、扫描电子显微镜)来表征聚合物基质。