Suppr超能文献

某医院急性脑出血继发院内胃肠道出血的影响因素(饮酒史)及列线图预测模型的构建

Influencing Factors (History of Alcohol Consumption) and Construction of a Nomogram Prediction Model for In-Hospital Gastrointestinal Bleeding Secondary to Acute Cerebral Hemorrhage in a Certain Hospital.

作者信息

Ye Peng, Luo Yeting

机构信息

Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, People's Republic of China.

Department of Neurology, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, People's Republic of China.

出版信息

Risk Manag Healthc Policy. 2025 May 11;18:1557-1568. doi: 10.2147/RMHP.S511692. eCollection 2025.

Abstract

OBJECTIVE

To investigate the factors influencing acute cerebral hemorrhage (ACH) secondary to nosocomial gastrointestinal hemorrhage (GIH) and construct a nomogram prediction model.

METHODS

A total of 500 ACH patients admitted to our hospital from August 2022 to August 2024 were retrospectively analyzed and divided into a modeling group (350 cases) and a validation group (150 cases) in a 7:3 ratio. Patients in the modeling group were further divided into the GIH and non-GIH groups. Clinical data were collected, and multivariate logistic regression was used to analyze risk factors. A nomogram model was constructed using R software. The predictive performance was evaluated using the ROC curve, calibration curve, and decision curve analysis (DCA).

RESULTS

Among 500 patients, 78 (15.6%) developed GIH. In the modeling group (350 cases), 56 (16.0%) had GIH. There were significant differences in age, history of coronary heart disease, history of alcohol consumption, NIHSS score, systolic blood pressure, and hemorrhage volume between groups (P<0.05). Logistic regression analysis identified these factors as independent risk factors for secondary GIH (P<0.05). The Area Under Curve(AUC) was 0.798 in the modeling group and 0.978 in the validation group, with calibration curves showing good agreement between predicted and observed values (Hosmer-Lemeshow(H-L) test: modeling group, χ²=7.156, P=0.732; validation group, χ²=7.015, P=0.703). DCA indicated a high clinical application value when the probability ranged from 0.06 to 0.95.

CONCLUSION

Age, history of coronary heart disease, history of alcohol consumption, NIHSS score, systolic blood pressure, and hemorrhage volume are key risk factors for secondary GIH in ACH patients. The nomogram model constructed based on these factors demonstrates good predictive performance and clinical application value. It can help clinicians prevent early onset and reduce the risk of bleeding in patients.

摘要

目的

探讨影响医院获得性胃肠道出血(GIH)继发急性脑出血(ACH)的因素,并构建列线图预测模型。

方法

回顾性分析2022年8月至2024年8月我院收治的500例ACH患者,按7:3比例分为建模组(350例)和验证组(150例)。建模组患者进一步分为GIH组和非GIH组。收集临床资料,采用多因素logistic回归分析危险因素。使用R软件构建列线图模型。采用ROC曲线、校准曲线和决策曲线分析(DCA)评估预测性能。

结果

500例患者中,78例(15.6%)发生GIH。建模组(350例)中,56例(16.0%)发生GIH。两组患者在年龄、冠心病史、饮酒史、美国国立卫生研究院卒中量表(NIHSS)评分、收缩压和出血量方面存在显著差异(P<0.05)。logistic回归分析确定这些因素为继发GIH的独立危险因素(P<0.05)。建模组曲线下面积(AUC)为0.798,验证组为0.978,校准曲线显示预测值与观察值之间具有良好的一致性(Hosmer-Lemeshow(H-L)检验:建模组,χ²=7.156,P=0.732;验证组,χ²=7.015,P=0.703)。DCA表明,当概率范围为0.06至0.95时,具有较高的临床应用价值。

结论

年龄、冠心病史、饮酒史、NIHSS评分、收缩压和出血量是ACH患者继发GIH的关键危险因素。基于这些因素构建的列线图模型具有良好的预测性能和临床应用价值。它可以帮助临床医生预防早期发病并降低患者出血风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a5/12080485/9c7b9e15ff39/RMHP-18-1557-g0001.jpg

相似文献

3
[Construction and verification of a nomogram of factors influencing the risk of death in patient with sepsis-associated thrombocytopenia].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Feb;36(2):131-136. doi: 10.3760/cma.j.cn121430-20230421-00307.
4
[Establishment and evaluation of a nomogram model for predicting the risk of sepsis in diabetic foot patients].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Jul;36(7):693-698. doi: 10.3760/cma.j.cn121430-20240327-00294.
5
A novel nomogram based on the patient's clinical data and CT signs to predict poor outcomes in AIS patients.
PeerJ. 2025 Jan 6;13:e18662. doi: 10.7717/peerj.18662. eCollection 2025.
6
[Establishment of a nomogram prediction model for 28-day mortality of septic shock patients based on routine laboratory data mining].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Nov;36(11):1127-1132. doi: 10.3760/cma.j.cn121430-20240202-00108.
7
[Establishment of a risk prediction model for cerebrogenic multiple organ dysfunction syndrome in patients with acute cerebral hemorrhage].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Sep;36(9):966-971. doi: 10.3760/cma.j.cn121430-20240202-00109.
10
[Construction and validation of a nomogram for predicting in-hospital postoperative heart failure in elderly patients with hip fracture].
Beijing Da Xue Xue Bao Yi Xue Ban. 2024 Oct 18;56(5):874-883. doi: 10.19723/j.issn.1671-167X.2024.05.019.

本文引用的文献

1
Acute Myocardial Injury in Spontaneous Intracerebral Hemorrhage: A Secondary Observational Analysis of the FAST Trial.
J Am Heart Assoc. 2024 Sep 3;13(17):e035053. doi: 10.1161/JAHA.124.035053. Epub 2024 Aug 27.
6
A Case of Isolated from Blood of a Patient with Coronary Heart Disease Complicated with Gastrointestinal Bleeding.
Infect Drug Resist. 2023 Jul 13;16:4571-4577. doi: 10.2147/IDR.S418755. eCollection 2023.
7
Risk Factors and Prognosis Analysis of Upper Gastrointestinal Bleeding in Patients With Acute Severe Cerebral Stroke.
J Clin Gastroenterol. 2024;58(5):440-446. doi: 10.1097/MCG.0000000000001877. Epub 2023 Jun 22.
9
Development and validation of a depression risk prediction nomogram for US Adults with hypertension, based on NHANES 2007-2018.
PLoS One. 2023 Apr 5;18(4):e0284113. doi: 10.1371/journal.pone.0284113. eCollection 2023.
10
Neurologic Improvement in Acute Cerebral Ischemia: Frequency, Magnitude, Predictors, and Clinical Outcomes.
Neurology. 2023 Mar 7;100(10):e1038-e1047. doi: 10.1212/WNL.0000000000201656. Epub 2022 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验