Qiao Jiawei, Chen Yunxiao, Ying Zhiliang
School of Mathematical Sciences, Fudan University, Shanghai, China.
Department of Statistics, London School of Economics and Political Science, London, UK.
Psychometrika. 2025 May 16:1-16. doi: 10.1017/psy.2025.17.
Bi-factor analysis is a form of confirmatory factor analysis widely used in psychological and educational measurement. The use of a bi-factor model requires specifying an explicit bi-factor structure on the relationship between the observed variables and the group factors. In practice, the bi-factor structure is sometimes unknown, in which case, an exploratory form of bi-factor analysis is needed. Unfortunately, there are few methods for exploratory bi-factor analysis, with the exception of a rotation-based method proposed in Jennrich and Bentler ([2011, Psychometrika 76, pp. 537-549], [2012, Psychometrika 77, pp. 442-454]). However, the rotation method does not yield an exact bi-factor loading structure, even after hard thresholding. In this article, we propose a constraint-based optimization method that learns an exact bi-factor loading structure from data, overcoming the issue with the rotation-based method. The key to the proposed method is a mathematical characterization of the bi-factor loading structure as a set of equality constraints, which allows us to formulate the exploratory bi-factor analysis problem as a constrained optimization problem in a continuous domain and solve the optimization problem with an augmented Lagrangian method. The power of the proposed method is shown via simulation studies and a real data example.
双因素分析是一种在心理和教育测量中广泛使用的验证性因素分析形式。使用双因素模型需要在观测变量和组因素之间的关系上指定一个明确的双因素结构。在实践中,双因素结构有时是未知的,在这种情况下,就需要一种探索性的双因素分析形式。不幸的是,除了Jennrich和Bentler([2011年,《心理测量学》76卷,第537 - 549页],[2012年,《心理测量学》77卷,第442 - 454页])提出的基于旋转的方法外,探索性双因素分析的方法很少。然而,即使经过硬阈值处理,旋转方法也不能产生精确的双因素载荷结构。在本文中,我们提出了一种基于约束的优化方法,该方法可以从数据中学习精确的双因素载荷结构,克服了基于旋转方法的问题。所提出方法的关键是将双因素载荷结构数学表征为一组等式约束,这使我们能够将探索性双因素分析问题表述为连续域中的约束优化问题,并使用增广拉格朗日方法求解该优化问题。通过模拟研究和一个实际数据示例展示了所提出方法的有效性。