Suppr超能文献

精确探索性双因素分析:一种基于约束的优化方法。

Exact Exploratory Bi-factor Analysis: A Constraint-Based Optimization Approach.

作者信息

Qiao Jiawei, Chen Yunxiao, Ying Zhiliang

机构信息

School of Mathematical Sciences, Fudan University, Shanghai, China.

Department of Statistics, London School of Economics and Political Science, London, UK.

出版信息

Psychometrika. 2025 May 16:1-16. doi: 10.1017/psy.2025.17.

Abstract

Bi-factor analysis is a form of confirmatory factor analysis widely used in psychological and educational measurement. The use of a bi-factor model requires specifying an explicit bi-factor structure on the relationship between the observed variables and the group factors. In practice, the bi-factor structure is sometimes unknown, in which case, an exploratory form of bi-factor analysis is needed. Unfortunately, there are few methods for exploratory bi-factor analysis, with the exception of a rotation-based method proposed in Jennrich and Bentler ([2011, Psychometrika 76, pp. 537-549], [2012, Psychometrika 77, pp. 442-454]). However, the rotation method does not yield an exact bi-factor loading structure, even after hard thresholding. In this article, we propose a constraint-based optimization method that learns an exact bi-factor loading structure from data, overcoming the issue with the rotation-based method. The key to the proposed method is a mathematical characterization of the bi-factor loading structure as a set of equality constraints, which allows us to formulate the exploratory bi-factor analysis problem as a constrained optimization problem in a continuous domain and solve the optimization problem with an augmented Lagrangian method. The power of the proposed method is shown via simulation studies and a real data example.

摘要

双因素分析是一种在心理和教育测量中广泛使用的验证性因素分析形式。使用双因素模型需要在观测变量和组因素之间的关系上指定一个明确的双因素结构。在实践中,双因素结构有时是未知的,在这种情况下,就需要一种探索性的双因素分析形式。不幸的是,除了Jennrich和Bentler([2011年,《心理测量学》76卷,第537 - 549页],[2012年,《心理测量学》77卷,第442 - 454页])提出的基于旋转的方法外,探索性双因素分析的方法很少。然而,即使经过硬阈值处理,旋转方法也不能产生精确的双因素载荷结构。在本文中,我们提出了一种基于约束的优化方法,该方法可以从数据中学习精确的双因素载荷结构,克服了基于旋转方法的问题。所提出方法的关键是将双因素载荷结构数学表征为一组等式约束,这使我们能够将探索性双因素分析问题表述为连续域中的约束优化问题,并使用增广拉格朗日方法求解该优化问题。通过模拟研究和一个实际数据示例展示了所提出方法的有效性。

相似文献

1
Exact Exploratory Bi-factor Analysis: A Constraint-Based Optimization Approach.
Psychometrika. 2025 May 16:1-16. doi: 10.1017/psy.2025.17.
2
Exploratory Bi-factor Analysis: The Oblique Case.
Psychometrika. 2012 Jul;77(3):442-54. doi: 10.1007/s11336-012-9269-1. Epub 2012 May 9.
3
Exploratory Bifactor Analysis: The Schmid-Leiman Orthogonalization and Jennrich-Bentler Analytic Rotations.
Multivariate Behav Res. 2016 Sep-Oct;51(5):698-717. doi: 10.1080/00273171.2016.1215898. Epub 2016 Sep 9.
4
Exploratory Bi-factor Analysis.
Psychometrika. 2011 Oct;76(4):537-49. doi: 10.1007/s11336-011-9218-4.
5
Hybrid Surrogate-Based Constrained Optimization With a New Constraint-Handling Method.
IEEE Trans Cybern. 2022 Jun;52(6):5394-5407. doi: 10.1109/TCYB.2020.3031620. Epub 2022 Jun 16.
6
Exploratory Bi-factor Analysis with Multiple General Factors.
Multivariate Behav Res. 2023 Nov-Dec;58(6):1072-1089. doi: 10.1080/00273171.2023.2189571. Epub 2023 Apr 10.
7
A Collaborative Neurodynamic Optimization Approach to Distributed Chiller Loading.
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):10950-10960. doi: 10.1109/TNNLS.2023.3245812. Epub 2024 Aug 5.
8
A Generalized Factor Rotation Framework with Customized Regularization.
Psychometrika. 2025 Jan 27:1-25. doi: 10.1017/psy.2025.1.
9
Enhancing Interpretability in Factor Analysis by Means of Mathematical Optimization.
Multivariate Behav Res. 2020 Sep-Oct;55(5):748-762. doi: 10.1080/00273171.2019.1677208. Epub 2019 Oct 30.
10
A hierarchical Food-Energy-Water Nexus (FEW-N) decision-making approach for Land Use Optimization.
Int Symp Process Syst Eng. 2018;44:1885-1890. doi: 10.1016/B978-0-444-64241-7.50309-8. Epub 2018 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验