Suppr超能文献

探索性双因素分析。

Exploratory Bi-factor Analysis.

机构信息

University of California at Los Angeles.

出版信息

Psychometrika. 2011 Oct;76(4):537-49. doi: 10.1007/s11336-011-9218-4.

Abstract

Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this paper is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific bi-factor model a priori. The result of an exploratory bi-factor analysis, however, can be used as an aid in defining a specific bi-factor model. Our exploratory bi-factor analysis is simply exploratory factor analysis using a bi-factor rotation criterion. This is a criterion designed to produce perfect cluster structure in all but the first column of a rotated loading matrix. Examples are given to show how exploratory bi-factor analysis can be used with ideal and real data. The relation of exploratory bi-factor analysis to the Schmid-Leiman method is discussed.

摘要

双因素分析是一种确认性因素分析的形式,最初由 Holzinger 引入。双因素模型有一个总因素和多个组因素。本文的目的是介绍一种探索性的双因素分析形式。使用探索性双因素分析的一个优点是,无需事先提供特定的双因素模型。然而,探索性双因素分析的结果可以作为定义特定双因素模型的辅助。我们的探索性双因素分析只是使用双因素旋转标准的探索性因素分析。这是一种标准,旨在除旋转载荷矩阵的第一列外,在所有列中产生完美的聚类结构。示例用于说明如何使用理想和实际数据进行探索性双因素分析。讨论了探索性双因素分析与 Schmid-Leiman 方法的关系。

相似文献

1
Exploratory Bi-factor Analysis.
Psychometrika. 2011 Oct;76(4):537-49. doi: 10.1007/s11336-011-9218-4.
2
Exploratory Bi-factor Analysis: The Oblique Case.
Psychometrika. 2012 Jul;77(3):442-54. doi: 10.1007/s11336-012-9269-1. Epub 2012 May 9.
3
Exploratory Bifactor Analysis: The Schmid-Leiman Orthogonalization and Jennrich-Bentler Analytic Rotations.
Multivariate Behav Res. 2016 Sep-Oct;51(5):698-717. doi: 10.1080/00273171.2016.1215898. Epub 2016 Sep 9.
4
Exploratory Bi-factor Analysis with Multiple General Factors.
Multivariate Behav Res. 2023 Nov-Dec;58(6):1072-1089. doi: 10.1080/00273171.2023.2189571. Epub 2023 Apr 10.
5
Exact Exploratory Bi-factor Analysis: A Constraint-Based Optimization Approach.
Psychometrika. 2025 May 16:1-16. doi: 10.1017/psy.2025.17.
6
Iteration of Partially Specified Target Matrices: Application to the Bi-Factor Case.
Multivariate Behav Res. 2017 Jul-Aug;52(4):416-429. doi: 10.1080/00273171.2017.1301244. Epub 2017 Apr 4.
7
On Omega Hierarchical Estimation: A Comparison of Exploratory Bi-Factor Analysis Algorithms.
Multivariate Behav Res. 2021 Jan-Feb;56(1):101-119. doi: 10.1080/00273171.2020.1736977. Epub 2020 May 23.
8
Direct Schmid-Leiman Transformations and Rank-Deficient Loadings Matrices.
Psychometrika. 2018 Dec;83(4):858-870. doi: 10.1007/s11336-017-9599-0. Epub 2017 Dec 4.
9
A General Approach for Fitting Pure Exploratory Bifactor Models.
Multivariate Behav Res. 2019 Jan-Feb;54(1):15-30. doi: 10.1080/00273171.2018.1484339. Epub 2018 Aug 30.
10
Invited Paper: The Rediscovery of Bifactor Measurement Models.
Multivariate Behav Res. 2012 Sep 1;47(5):667-696. doi: 10.1080/00273171.2012.715555.

引用本文的文献

1
A multidimensional Bayesian IRT method for discovering misconceptions from concept test data.
Front Psychol. 2025 Jan 29;16:1506320. doi: 10.3389/fpsyg.2025.1506320. eCollection 2025.
2
Inference of Correlations Among Testlet Effects: A Latent Variable Selection Method.
Appl Psychol Meas. 2024 Dec 26:01466216241310598. doi: 10.1177/01466216241310598.
3
The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
Appl Psychol Meas. 2024 Oct 21:01466216241291237. doi: 10.1177/01466216241291237.
4
Bayesian factor selection in a hybrid approach to confirmatory factor analysis.
J Appl Stat. 2024 Apr 3;51(15):3005-3038. doi: 10.1080/02664763.2024.2335568. eCollection 2024.
5
Improved Scoring of the Center for Epidemiologic Studies Depression Scale - Revised: An Item Response Theory Analysis.
J Psychopathol Behav Assess. 2024;46(3):783-792. doi: 10.1007/s10862-024-10155-y. Epub 2024 Jul 16.
7
Accommodating and Extending Various Models for Special Effects Within the Generalized Partially Confirmatory Factor Analysis Framework.
Appl Psychol Meas. 2024 Jul;48(4-5):208-229. doi: 10.1177/01466216241261704. Epub 2024 Jun 12.
9
Sensitivity to intrinsic rewards is domain general and related to mental health.
Nat Ment Health. 2023;1(9):679-691. doi: 10.1038/s44220-023-00116-x. Epub 2023 Sep 6.
10
A general exposome factor explains individual differences in functional brain network topography and cognition in youth.
Dev Cogn Neurosci. 2024 Apr;66:101370. doi: 10.1016/j.dcn.2024.101370. Epub 2024 Apr 2.

本文引用的文献

1
A Comparison of Bifactor and Second-Order Models of Quality of Life.
Multivariate Behav Res. 2006 Jun 1;41(2):189-225. doi: 10.1207/s15327906mbr4102_5.
4
A bifactor approach to modeling the structure of the psychopathy checklist-revised.
J Pers Disord. 2007 Apr;21(2):118-41. doi: 10.1521/pedi.2007.21.2.118.
5
The role of the bifactor model in resolving dimensionality issues in health outcomes measures.
Qual Life Res. 2007;16 Suppl 1:19-31. doi: 10.1007/s11136-007-9183-7. Epub 2007 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验